Skip to main content
Log in

Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models

  • Petrology and Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Partial melting experiments were carried on KLB-1 peridotite, a xenolith sample from the Earth’s upper mantle, at 1.5 GPa and temperatures from 1 300 to 1 600 °C, with heating time varies from 1 to 30 min. We quantify the axial temperature gradient in the deformation-DIA apparatus (D-DIA) and constrain the time scale of partial melting by comparing experimental observations with calculated result from pMELTS program. The compositions of the liquid phase and the coexisting solid phases (clinopyroxene, orthopyroxene, and olivine) agree well with those calculated from pMELTS program, suggesting that local chemical equilibrium achieves during partial melting, although longer heating time is required to homogenize the bulk sample. The Mg# (=Mg/(Mg+Fe) mol.%) of olivines from the 1-minute heating experiment changed continuously along the axial of the graphite capsule. A thermal gradient of 50 °C/mm was calculated by comparing the Mg# of olivine grains with the output of pMELTS program. Olivine grains at the hot end of the graphite capsule from the three experiments heated at 1 400 °C but with different annealing time show consistence on Mg#, indicating that partitioning of Fe2+ between the olivine grains and the silicate melt happened fast, and partial melting occurs in seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Agee, C. B., Walker, D., 1990. Aluminum Partitioning between Olivine and Ultrabasic Silicate Liquid to 6GPa. Contributions to Mineralogy and Petrology, 105(3): 243–254. https://doi.org/10.1007/bf00306537

    Article  Google Scholar 

  • Anderson, D. L., Sammis, C., 1970. Partial Melting in the Upper Mantle. Physics of the Earth and Planetary Interiors, 3: 41–50. https://doi.org/10.1016/0031-9201(70)90042-7

    Article  Google Scholar 

  • Asimow, P. D., Ghiorso, M. S., 1998. Algorithmic Modifications Extending MELTS to Calculate Subsolidus Phase Relations. American Mineralogist, 83(9/10): 1127–1132. https://doi.org/10.2138/am-1998-9-1022

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M. M., Smith, N. D., 2007. Partial Melting Experiments of Peridotite+CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11): 2093–2124. https://doi.org/10.1093/petrology/egm053

    Article  Google Scholar 

  • Davis, F. A., Hirschmann, M. M., Humayun, M., 2011. The Composition of the Incipient Partial Melt of Garnet Peridotite at 3GPa and the Origin of OIB. Earth and Planetary Science Letters, 308(3/4): 380–390. https://doi.org/10.1016/j.epsl.2011.06.008

    Article  Google Scholar 

  • Davis, F. A., Tangeman, J. A., Tenner, T. J., et al., 2009. The Composition of KLB-1Peridotite. American Mineralogist, 94(1): 176–180. https://doi.org/10.2138/am.2009.2984

    Article  Google Scholar 

  • Donovan, J. J., 2012. Probe for EPMA: Acquisition, Automation and Analysis. Enterprise Edition Probe Software Inc., Eugene

    Google Scholar 

  • Du, W., Li, L., Weidner, D. J., 2014. Experimental Observation on Grain Boundaries Affected by Partial Melting and Garnet Forming Phase Transition in KLB-1Peridotite. Physics of the Earth and Planetary Interiors, 228: 287–293. https://doi.org/10.1016/j.pepi.2013.11.011

    Article  Google Scholar 

  • Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., et al., 2002. The pMELTS: A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3GPa. Geochemistry, Geophysics, Geosystems, 3(5): 1–35. https://doi.org/10.1029/2001gc000217

    Article  Google Scholar 

  • Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2/3): 197–212. https://doi.org/10.1007/s004100050036

    Google Scholar 

  • Harmon, N., Forsyth, D. W., Weeraratne, D. S., 2009. Thickening of Young Pacific Lithosphere from High-Resolution Rayleigh Wave Tomography: A Test of the Conductive Cooling Model. Earth and Planetary Science Letters, 278(1/2): 96–106. https://doi.org/10.1016/j.epsl.2008.11.025

    Article  Google Scholar 

  • Herzberg, C., Gasparik, T., Sawamoto, H., 1990. Origin of Mantle Peridotite: Constraints from Melting Experiments to 16.5 GPa. Journal of Geophysical Research, 95(B10): 15779–15803. https://doi.org/10.1029/jb095ib10p15779

    Article  Google Scholar 

  • Herzberg, C., Raterron, P., Zhang, J. Z., 2000. New Experimental Observations on the Anhydrous Solidus for Peridotite KLB-1. Geochemistry, Geophysics, Geosystems, 1(11): 1–15. https://doi.org/10.1029/2000gc000089

    Article  Google Scholar 

  • Herzberg, C., Zhang, J. Z., 1996. Melting Experiments on Anhydrous Peridotite KLB-1: Compositions of Magmas in the Upper Mantle and Transition Zone. Journal of Geophysical Research: Solid Earth, 101(B4): 8271–8295. https://doi.org/10.1029/96jb00170

    Article  Google Scholar 

  • Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1): 42–44. https://doi.org/10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2

    Article  Google Scholar 

  • Hirose, K., Fei, Y. W., 2002. Subsolidus and Melting Phase Relations of Basaltic Composition in the Uppermost Lower Mantle. Geochimica et Cosmochimica Acta, 66(12): 2099–2108. https://doi.org/10.1016/s0016-7037(02)00847-5

    Article  Google Scholar 

  • Hirose, K., Kushiro, I., 1993. Partial Melting of Dry Peridotites at High Pressures: Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond. Earth and Planetary Science Letters, 114(4): 477–489. https://doi.org/10.1016/0012-821X(93)90077-M

    Article  Google Scholar 

  • Hirschmann, M. M., 2000. Mantle Solidus: Experimental Constraints and the Effects of Peridotite Composition. Geochemistry, Geophysics, Geosystems, 1(10): 1042. https://doi.org/10.1029/2000gc000070

    Article  Google Scholar 

  • Hirschmann, M. M., 2010. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 179(1/2): 60–71. https://doi.org/10.1016/j.pepi.2009.12.003

    Article  Google Scholar 

  • Hirschmann, M. M., Ghiorso, M. S., Wasylenki, L. E., et al., 1998. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments. Journal of Petrology, 39(6): 1091–1115. https://doi.org/10.1093/petroj/39.6.1091

    Google Scholar 

  • Ito, K., Kennedy, G. C., 1967. Melting and Phase Relations in a Natural Peridotite to 40Kilobars. American Journal of Science, 265(6): 519–538. https://doi.org/10.2475/ajs.265.6.519

    Article  Google Scholar 

  • Kato, T., Ringwood, A. E., Irifune, T., 1988. Constraints on Element Partition Coefficients between MgSiO3 Perovskite and Liquid Determined by Direct Measurements. Earth and Planetary Science Letters, 90(1): 65–68

    Article  Google Scholar 

  • Lesher, C. E., Pickering-Witter, J., Baxter, G., et al., 2003. Melting of Garnet Peridotite: Effects of Capsules and Thermocouples, and Implications for the High-Pressure Mantle Solidus. American Mineralogist, 88(8/9): 1181–1189. https://doi.org/10.2138/am-2003-8-901

    Google Scholar 

  • Lesher, C. E., Walker, D., 1988. Cumulate Maturation and Melt Migration in a Temperature Gradient. Journal of Geophysical Research: Solid Earth, 93(B9): 10295–10311. https://doi.org/10.1029/jb093ib09p10295

    Google Scholar 

  • Li, L., 2009. Studies of Mineral Properties at Mantle Condition Using Deformation Multi-Anvil Apparatus. Progress in Natural Science, 19(11): 1467–1475. https://doi.org/10.1016/j.pnsc.2009.06.001

    Article  Google Scholar 

  • Li, L., Weidner, D. J., 2013. Effect of Dynamic Melting on Acoustic Velocities in a Partially Molten Peridotite. Physics of the Earth and Planetary Interiors, 222: 1–7. https://doi.org/10.1016/j.pepi.2013.06.009

    Article  Google Scholar 

  • Li, L., Weidner, D. J., 2014. Detection of Melting by X-Ray Imaging at High Pressure. Review of Scientific Instruments, 85(6): 065104. https://doi.org/10.13039/100000001

    Article  Google Scholar 

  • Munro, R. G., 1997. Evaluated Material Properties for a Sintered Alpha-Alumina. Journal of the American Ceramic Society, 80(8): 1919–1928. https://doi.org/10.1111/j.1151-2916.1997.tb03074.x

    Article  Google Scholar 

  • Ohtani, E., 1979. Melting Relation of Fe2SiO4 up to about 200Kbar. Journal of Physics of the Earth, 27(3): 189–208. https://doi.org/10.4294/jpe1952.27.189

    Article  Google Scholar 

  • Raterron, P., Merkel, S., Holyoke, C. W. III, 2013. Axial Temperature Gradient and Stress Measurements in the Deformation-DIA Cell Using Alumina Pistons. Review of Scientific Instruments, 84(4): 043906. https://doi.org/10.13039/100000015

    Article  Google Scholar 

  • Smith, P. M., Asimow, P. D., 2005. Adiabat_1ph: A New Public Front-End to the MELTS, PMELTS, and PHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): 1–8. https://doi.org/10.1029/2004gc000816

    Article  Google Scholar 

  • Takahashi, E., 1986. Melting of a Dry Peridotite KLB-1 up to 14GPa: Implications on the Origin of Peridotitic Upper Mantle. Journal of Geophysical Research, 91(B9): 9367–9382. https://doi.org/10.1029/jb091ib09p09367

    Article  Google Scholar 

  • Takahashi, E., Shimazaki, T., Tsuzaki, Y., et al., 1993. Melting Study of a Peridotite KLB-1 to 6.5GPa, and the Origin of Basaltic Magmas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 342(1663): 105–120. https://doi.org/10.1098/rsta.1993.0008

    Article  Google Scholar 

  • Walker, D., DeLong, S. E., 1982. Soret Separation of Mid-Ocean Ridge Basalt Magma. Contributions to Mineralogy and Petrology, 79(3): 231–240. https://doi.org/10.1007/bf00371514

    Article  Google Scholar 

  • Walter, M., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1): 29–60. https://doi.org/10.1093/petrology/39.1.29

    Article  Google Scholar 

  • Weidner, D. J., Li, L., 2015. Kinetics of Melting in Peridotite from Volume Strain Measurements. Physics of the Earth and Planetary Interiors, 246: 25–30. https://doi.org/10.13039/100000015

    Article  Google Scholar 

  • Yoshino, T., Takei, Y., Wark, D. A., et al., 2005. Grain Boundary Wetness of Texturally Equilibrated Rocks, with Implications for Seismic Properties of the Upper Mantle. Journal of Geophysical Research, 110(B8): 1–16. https://doi.org/10.1029/2004jb003544

    Article  Google Scholar 

  • Zhang, J. Z., Herzberg, C., 1994. Melting Experiments on Anhydrous Peridotite KLB-1 from 5.0 to 22.5GPa. Journal of Geophysical Research: Solid Earth, 99(B9): 17729–17742. https://doi.org/10.1029/94jb01406

    Article  Google Scholar 

  • Zhu, W., Gaetani, G. A., Fusseis, F., et al., 2011. Microtomography of Partially Molten Rocks: Three-Dimensional Melt Distribution in Mantle Peridotite. Science, 332(6025): 88–91. https://doi.org/10.13039/100006151

    Article  Google Scholar 

Download references

Acknowledgments

KLB-1 samples used in this study were generously denoted by Prof. Claude Herzberg from Rutgers University. We thank Christopher A. Vidito from Rutgers University for his support with all the electron microprobe measurements and Jim Quinn from Stony Brook University for the SEM measurement. The authors acknowledge support by the National Natural Science Foundation of China (No. 41773052), and the National Science Foundation of USA (Nos. EAR 1141895, EAR 1045629, and EAR 0968823). The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0839-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Li, L. & Weidner, D.J. Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models. J. Earth Sci. 29, 245–254 (2018). https://doi.org/10.1007/s12583-018-0839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0839-8

Key words

Navigation