Skip to main content
Log in

Dietary Restriction at Old Age Lowers Mitochondrial Oxygen Radical Production and Leak at Complex I and Oxidative DNA Damage in Rat Brain

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Previous studies in mammalian models indicate that the rate of mitochondrial reactive oxygen species ROS production and the ensuing modification of mitochondrial DNA (mtDNA) link oxidative stress to aging rate. However, there is scarce information concerning this in relation to caloric restriction (CR) in the brain, an organ of maximum relevance for ageing. Furthermore, it has never been studied if CR started late in life can improve those oxidative stress-related parameters. In this investigation, rats were subjected during 1 year to 40% CR starting at 24 months of age. This protocol of CR significantly decreased the rate of mitochondrial H2O2 production (by 24%) and oxidative damage to mtDNA (by 23%) in the brain below the level of both old and young ad libitum-fed animals. In agreement with the progressive character of aging, the rate of H2O2 production of brain mitochondria stayed constant with age. Oxidative damage to nuclear DNA increased with age and this increase was fully reversed by CR to the level of the young controls. The decrease in ROS production induced by CR was localized at Complex I and occurred without changes in oxygen consumption. Instead, the efficiency of brain mitochondria to avoid electron leak to oxygen at Complex I was increased by CR. The mechanism involved in that increase in efficiency was related to the degree of electronic reduction of the Complex I generator. The results agree with the idea that CR decreases aging rate in part by lowering the rate of free radical generation of mitochondria in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dG:

deoxyguanosine

mtDNA:

mitochondrial DNA

nDNA:

nuclear DNA

8-oxodG:

8-oxo,7,8-dihydro-2′-deoxyguanosine

ROS:

reactive oxygen species

References

  • Asunción, J. G., Millan, A., Pla, R., Bruseghini, I., Esteras, A., Pallardo, F. V., Sastre, J., and Viña, J. (1996). FASEB J. 10, 333–338.

    PubMed  Google Scholar 

  • Baek, B. S., Kwon, H. J., Lee, K. H., Yoo, M. A., Kim, K. W., Ikeno, Y., Yu, B. P., and Chung, H. Y. (1999). Arch. Pharm. Res. 22, 361–366.

    CAS  PubMed  Google Scholar 

  • Barja, G. (1999). J. Bioenerg. Biomembr. 31, 347–366.

    CAS  PubMed  Google Scholar 

  • Barja, G. (2000). Aging Clin. Exp. Res. 12, 342–355.

    CAS  Google Scholar 

  • Barja, G. (2002). J. Bioenerg. Biomembr. 34, 227–233.

    CAS  PubMed  Google Scholar 

  • Barja, G. (2004a). Trends Neurosci. 27, 595–600.

    CAS  Google Scholar 

  • Barja, G. (2004b). Biol. Rev. 79, 235–251.

    Google Scholar 

  • Beal, M. F. (2003). Ann. N.Y. Acad. Sci. 991, 120–131.

    CAS  PubMed  Google Scholar 

  • Beckman, K. B., and Ames, B. (1998). Physiol. Rev. 78, 547–581.

    CAS  PubMed  Google Scholar 

  • Cao, S. X., Dhabi, J. M., Mote, P. L., and Spindler, S. R. (2001). PNAS. 98, 10630–10635.

    CAS  PubMed  Google Scholar 

  • Edwards, M. G., Sarkar, D., Klopp, R., Morrow, J. D., Weindruch, R. D., and Prolla, T. A. (2003). Physiol. Genomics. 13, 119–127.

    CAS  PubMed  Google Scholar 

  • Forster, M. J., Morris, P., and Sohal, R. S. (2003). FASEB J. 17, 690–692.

    PubMed  Google Scholar 

  • Gredilla, R., Sanz, A., López-Torres, M., and Barja, G. (2001). FASEB J. 15, 1589–1591.

    CAS  PubMed  Google Scholar 

  • Greenberg, J. A., Wei, H., Ward, K., and Boozer, C. N. (2000). Mech. Ageing Dev. 115, 107–117.

    CAS  PubMed  Google Scholar 

  • Hamilton, M. L., Van Remmen, H. V., Drake, J. A., Yang, H., Guo, Z. M., Kewitt, K., Walter, C. A., and Richardson, A. (2001). PNAS 98, 10469–10474.

    CAS  PubMed  Google Scholar 

  • Herrero, A., and Barja, G. (2001). J. Am. Aging Assoc. 24, 45–50.

    CAS  Google Scholar 

  • Hoglinger, G. U., Carrad, G., Michel, P. P., Medja, F., Lombes, A., Ruberg, M., Friguet, B., and Hirsch, E. C. (2003). J. Neurochem. 86, 1297–1307.

    PubMed  Google Scholar 

  • Honda, K. (2004). Ann. N.Y. Acad. Sci. 1012, 179–182.

    CAS  PubMed  Google Scholar 

  • Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R., and Walford, R. L. (1987). J. Gerontol. 42, 78–81.

    CAS  PubMed  Google Scholar 

  • Kanda, K. (2002). Micros Res. Tech. 59, 301–305.

    Google Scholar 

  • Kaneko, T., Tahara, S., and Matsuo, M. (1997). Free Radical. Biol. Med. 23, 76–81.

    CAS  Google Scholar 

  • Khrapko, K., Nekhaeva, E., Kraytsberg, Y., and Kunz, W. (2003). Mutat. Res. 522, 13–19.

    CAS  PubMed  Google Scholar 

  • Lai, C. K., and Clark, J. B. (1979). Methods Enzymol. 55, 51–60.

    CAS  PubMed  Google Scholar 

  • Latorre, A., Moya, A., and Ayala, A. (1986). PNAS USA 83, 8649–8653.

    CAS  Google Scholar 

  • Lee, C. K., Allison, D. B., Brand, J., Weindruch, R., and Prolla, T. A. (2002). PNAS 99, 14988–14993.

    CAS  PubMed  Google Scholar 

  • López-Torres, M., Gredilla, R., Sanz, A., and Barja, G. (2002). Free Radical. Biol. Med. 32, 882–889.

    Google Scholar 

  • Loft, S., and Poulsen, H. E. (1999). Methods Enzymol. 300, 166–184.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P., Chan, S. L., and Duan, W. (2002). Physiol. Rev. 82, 637–672.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P. (2003). Neurology 60, 690–695.

    CAS  PubMed  Google Scholar 

  • Meccoci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, F. (1993). Ann. Neurol. 34, 609–616.

    PubMed  Google Scholar 

  • Moroi-Fetters, S. E. (1989). Neurobiol. Aging 10, 317–322.

    CAS  PubMed  Google Scholar 

  • Sanz, A., Gredilla, R., Pamplona, R., Portero-Otín, M., Vara, E., Tresguerres, J. A. F., and Barja, G. (2005). Biogerontol. 6, 15–26.

    CAS  Google Scholar 

  • Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. J., and Lal, H. (1994a). Mech. Ageing Dev. 74, 121–133.

    CAS  Google Scholar 

  • Sohal, R. S., Agarwal, S., Candas, M., Forster, M. J., and Lal, H. (1994b). Mech. Ageing Dev. 76, 215–224.

    CAS  Google Scholar 

  • Starkov, A. A., and Fiskum, G. (2003). J. Neurochem. 86, 1101–1107.

    CAS  PubMed  Google Scholar 

  • Stuart, J. A., Karahalil, B., Hogue, B. A., Souza-Pinto, N. C., and Bohr, V. A. (2004). FASEB J. 18, 595–597.

    CAS  PubMed  Google Scholar 

  • Takahashi, R., and Goto, S. (2002). Micros Res. Tech. 59, 278–281.

    CAS  Google Scholar 

  • Tyler, D. D. (1992). The Mitochondria in Health and Disease, VCH Publishers, New York.

    Google Scholar 

  • Wanagat, J., Allison, D. B., and Weindruch, R. (1999). Toxicol. Sci. 52S, 35–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, A., Caro, P., Ibañez, J. et al. Dietary Restriction at Old Age Lowers Mitochondrial Oxygen Radical Production and Leak at Complex I and Oxidative DNA Damage in Rat Brain. J Bioenerg Biomembr 37, 83–90 (2005). https://doi.org/10.1007/s10863-005-4131-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-4131-0

Keywords

Navigation