Skip to main content
Log in

Peptidases in the kidney and urine of rats after castration

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

The localization of various peptidases in the renal section of the rat was investigated histochemically, and their activities were determined fluorometrically in renal homogenate. The membrane-bound peptidases aminopeptidase A (APA), aminopeptidase M (APM), γ-glutamyl-transferase (γ-GT), dipeptidylpeptidase IV (DAP IV), and the lysosomal dipeptidyl peptidases I (DAP I) and II (DAP II) were investigated in male and female (estrus) rats both before and 30 days after castration. In addition, protein excretion and APA, APM, DAP I and DAP IV activities were measured in the urine of these animals. Histochemically, the membrane-bound peptidases are demonstrable mainly in the brush borders of the proximal tubules. In addition, APA and DAP IV are found in the glomeruli, γ-GT and DAP IV in the thin descending limbs of the loops of Henle, and γ-GT in the basal labyrinth of the S2 and S3 segments. The lysosomal peptidases are most concentrated in the S1 and S2 segments of the proximal tubule, in the distal tubule, and in certain cells of the connecting tubule and collecting duct, where they are contained in lysosomes of varying size. Sex differences and castration effects are demonstrable both histochemically and biochemically for the investigated peptidases. Histochemically these effects are most pronounced in the S3 segments for the membrane-bound peptidases, and in the lysosomes of the proximal tubule for the lysosomal peptidases. Biochemical tests in controls show significantly higher lysosomal peptidase activities in the renal homogenate of females than of males. After castration the lysosomal peptidase activities in males increase, approaching those of females. This appears to have bearing on the sex-dependent proteinuria in rats, for lysosomal peptidases and proteinases are particularly important in the degradation of filtered proteins that are reabsorbed in the proximal tubule. In females high lysosomal peptidase activities correlate with a low proteinuria, while males demonstrate lower lysosomal peptidase activities and a significantly higher proteinuria than females. After castration, the lysosomal peptidase activities and proteinuria in males approach those in females. Renal peptidases are also excreted in the urine, again with sex differences, and so these excreted peptidases contribute to the proteinuria in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert Z, Orlowski M, Szewczuk A (1961) Histochemical demonstration of γ-glutamyl transpeptidase. Nature (London) 191:767–768

    Google Scholar 

  • Addis T (1931–1932) Proteinuria and cylinduria. Proc Calif Acad Med 2:38

    Google Scholar 

  • Allen E (1922) The oestrus cycle in the mouse. Am J Anat 30:297–371

    Google Scholar 

  • Bargmann W (1978) Geschlechtsbedingte Unterschiede der Nieren. In: Handbuch der mikroskopischen Anatomie des Menschen. Band 7: Harn- und Geschlechtsapparat. Teil 5. Springer, Berlin Heidelberg New York, pp 331–341

    Google Scholar 

  • Binkley F (1951) Metabolism of glutathione. Nature (London) 167:888–889

    Google Scholar 

  • Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Does transtubular transport of intact protein occur in the kidney? In: Maunsbach AB, Olson TS, Christensen EJ (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 385–396

    Google Scholar 

  • Bodnaryk R (1972) Membran-bound γ-glutamyl transpeptidase. Evidence that it is a component of the amino acid site of certain neutral amino acid transport systems. Can J Biochem 50:524–528

    Google Scholar 

  • Callahan PX, McDonald JK, Ellis S (1969) Peptide sequence determinations utilizing dipeptidyl aminopeptidase I (cathepsin C). Fed Proc 28:661

    Google Scholar 

  • Carone FA, Peterson DR, Oparil S, Pullman TN (1980) Renal tubular transport and catabolism of small peptides. In: Maunsbach AB, Olson TS, Christensen EJ (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 327–340

    Google Scholar 

  • Carone FA, Pullman TN, Oparil S, Nakamura S (1976) Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule. Am J Physiol 230:1420–1424

    Google Scholar 

  • Christensen EJ, Maunsbach AB (1974) Intralysosomal digestion of lysozyme in renal proximal tubule cells. Kidney Int 6:396–407

    Google Scholar 

  • Daigeler R (1981) Sex-dependent changes in the rat kidney after hypophysectomy. Cell Tissue Res 216:423–443

    Google Scholar 

  • Davidoff M, Caffier M, Schiebler TH (1980) Steroid hormone binding receptors in the rat kidney. Histochemistry 60:39–48

    Google Scholar 

  • Davidson SJ (1973) Protein absorption by renal cells. II. Very rapid lysosomal digestion of exogenous ribonuclease in vitro. J Cell Biol 59:213–222

    Google Scholar 

  • Deimling O v (1970) Enzymarchitektur der Niere und Sexualhormone. Prog Histochem Cytochem 1:1–50

    Google Scholar 

  • Fonteles MC, Pillon DJ, Jeske AH, Leibach FH (1976) Extraction of glutathione by isolated perfused rabbit kidney. J Surg Res 21:169–174

    Google Scholar 

  • Galaske RG, Liew JB Van, Feld LG (1979) Filtration and reabsorption of endogenous low-molecular-weight protein in the rat kidney. Kidney Int 16:394–403

    Google Scholar 

  • Gossrau R (1979) Peptidasen II. Zur Lokalisation der Dipeptidylpeptidase IV (DPP IV). Histochemische und biochemische Untersuchung. Histochemistry 60:231–248

    Google Scholar 

  • Gossrau R (1981) Investigation of proteinases in the digestive tract using 4-methoxy-2-naphylamine (MNA) substrates. J Histochem Cytochem 29:464–480

    Google Scholar 

  • Gossrau R, Lojda Z (1980) Study on Dipeptidylpeptidase II (DPP II). Histochemistry 70:53–76

    Google Scholar 

  • Johnson V, Maack T (1977) Renal extraction, filtration, absorption, and catabolism of growth hormone. Am J Physiol 233:F197-F200

    Google Scholar 

  • Kenny AJ (1979) Proteinases associated with cell membranes. In: Barrett AJ (ed) Proteinases in mammalian cells and tissue. North Holland, Amsterdam New York Oxford, pp 393–444

    Google Scholar 

  • Kugler P (1981a) Localization of aminopeptidase A (angiotensinase A) in the rat and mouse kidney. Histochemistry 72:269–278

    Google Scholar 

  • Kugler P (1981b) Über angiotensinabbauende Aminopeptidasen in der Rattenniere. Habilitationsschrift

  • Lojda Z, Gossrau R (1980) Study on aminopeptidase A. Histochemistry 67:267–290

    Google Scholar 

  • Lojda Z, Gossrau R, Schiebler TH (1979) Enzyme histochemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Maack T, Johnson V, Kan ST, Figneiredo J, Singulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270

    Google Scholar 

  • Markkanen SO, Rajaniemi HJ (1980) Lysosomal degradation of human choriogonadotropin in the proximal tubule cells of rat kidney. In: Maunsbach AB, Olson TS, Christensen EJ (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 361–374

    Google Scholar 

  • Mattenheimer H (1970) Enzyme im Urin. In: Bergmeyer MU (ed) Methoden der enzymatischen Analyse, 2. Aufl. Verlag Chemie, Weinheim

    Google Scholar 

  • Maunsbach AB (1969) Functions of lysosomes in kidney cells. In: Dingle GT, Fell MB (eds) Lysosomes in Biology and Pathology, Vol 1. North Holland, Amsterdam, pp 115–154

    Google Scholar 

  • Maunsbach AB (1976) Cellular mechanisms of tubular protein transport. In Thurau K (ed) Kidney and urinary tract physiology II. International Review of Science, Physiology, Series 2, Vol 11, University Park Press, Baltimore, pp 145–167

    Google Scholar 

  • McDonald JK, Schwabe Ch (1979) Intracellular exopeptidases. In: Barrett AJ (ed) Proteinases in mammalian cells and tissues. North Holland, Amsterdam New York Oxford, pp 311–391

    Google Scholar 

  • McDonald JK, Zeitman BB, Eillis S (1972) Angiotensinase activity of dipeptidyl aminopeptidase I (cathepsin C) of rat liver. Biochem Biophys Res Commun 46:62–70

    Google Scholar 

  • McDonald JK, Callahan PX, Zeitman BB, Ellis S (1969a) Inactivation and degradation of glucagon by dipeptidyl aminopeptidase I (cathepsin C) of rat liver. J Biol Chem 244:6199–6208

    Google Scholar 

  • MDonald JK, Zeitman BB, Callahan PK, Ellis S (1974) Detection of a lysosomal carboxypeptidase and a lysosomal dipeptidase in highly-purified dipeptidyl aminopeptidase I (cathepsin C) and the elemination of their activities from preparations used to sequence peptides. J Biol Chem 249:234–240

    Google Scholar 

  • McDonald JK, Zeitman BB, Reilly TJ, Ellis S (1969b) New observation on the substrate specifity of cathepsin C (dipeptidyl amino-peptidase I). J Biol Chem 244:2693–2709

    Google Scholar 

  • Meister A, Tate SS, Ross LL (1976) Membrane-bound γ-glutamyl transpeptidase. In: The enzymes of biological membranes, Vol 3, pp 315–347

  • Mogielnicki RP, Waldmann TA, Strober W (1971) Renal handling of low molecular weight proteins. I. l-Chain metabolism in experimental renal disease. J Clin Invest 50:901–909

    Google Scholar 

  • Mühlenfeld WE (1969) Über die Entwicklung und Chemodifferenzierung der Rattenniere unter besonderer Berücksichtigung der Geschlechtsunterschiede. Histochemie 18:97–131

    Google Scholar 

  • Oparil S, Carone FA, Pullman TN, Nakamura S (1976) Inhibition of proximal tubular hydrolysis and reabsorption of bradykinin by peptides. Am J Physiol 231:743–748

    Google Scholar 

  • Orlowski M, Meister A (1970) The γ-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci USA 67:1248–1255

    Google Scholar 

  • Orlowski M, Wilk S (1978) Synthesis of ophthalmic acid in liver and kidney in vivo. Eur J Biochem 170:415–421

    Google Scholar 

  • Pullman TN, Oparil S, Carone FA (1975) Fate of labeled angiotensin II microinfused into individual nephrons in the rat. Am J Physiol 229:747–751

    Google Scholar 

  • Prusiner S, Doak CW, Kirk G (1976) A novel mechanism for group translocation: substrate-product utilization by γ-glutamyl transpeptidase in peptide and amino acid transport. J Cell Physiol 89:853–864

    Google Scholar 

  • Rubenstein AH, Spitz I (1968) Role of the kidney in insulin metabolism and excretion. Diabetes 17:161–169

    Google Scholar 

  • Rutenberg AM, Kim M, Fischbein JW, Hanker JS, Wasserkrug ML, Seligman AM (1969) γ-Glutamyl transpeptidase activity. J Histochem Cytochem 17:517–526

    Google Scholar 

  • Schiebler TH, Danner KG (1978) The effect of sex hormones on the proximal tubules in the rat kidney. Cell Tissue Res 192:527–549

    Google Scholar 

  • Schiebler TH, Mühlenfeld E (1966) Über geschlechtsspezifische Chemodifferenzierung der Rattenniere. Naturwissenschaften 53:311

    Google Scholar 

  • Schiebler TH, Mühlenfeld WE (1967) Über geschlechtsspezifische Unterschiede im Fermentmuster der Ratte. Anat Anz Erg-Heft 120:41–48

    Google Scholar 

  • Sellers AL, Goodman MC, Marmorston J, Smith M (1950) Sex differences in proteinuria in the rat. Am J Physiol 163:662–667

    Google Scholar 

  • Sierociński W, Schiebler TH (1980) Geschlechtsunterschiede in der Niere verschiedener Säuger. Verh Anat Ges 74:503–505

    Google Scholar 

  • Silbernagl S (1978) The role of brush border peptidases in degradation and reabsorption of γ-glutamyl peptides and peptide hormones studied with microperfusion of the proximal tubule of rat kidney. Kidney Int 13:532

    Google Scholar 

  • Silbernagl S, Pfaller W, Heinle M, Wendel A (1978) Topology and function of renal γ-Glutamyl Transpeptidase. In: Sies M, Wendel A (eds) Functions of glutathione in liver and kidney. Springer, Berlin Heidelberg New York, pp 60–69

    Google Scholar 

  • Strober W, Waldmann TA (1974) The role of the kidney in the metablism of plasma proteins. Nephron 13:35–66

    Google Scholar 

  • Wendel A, Hahn R, Guder WG (1976) On the role of γ-glutamyl transferase in renal tubular amino acid reabsorption. Curr Probl Clin Biochem 6:426–436

    Google Scholar 

  • Wenk M (1966) Hormonabhängige Enzymverteilung in der Niere. I. Stimulation der β-Hydroxy-Buttersäure-Dehydrogenase-Aktivität bei normalen und kastrierten männlichen Albinoratten durch Oestradiol. Z Mikrosk Anat Forsch 75:198–209

    Google Scholar 

  • Wenk M (1968) Hormonabhängige Enzymverteilung in der Niere IV. Wirkung von Kastration und Sexualhormonen auf die Aktivität der β-Hydroxy-Buttersäure-Dehydrogenase in der Niere bei weiblichen Albinoratten. Histochemie 12:120–129

    Google Scholar 

  • Winckler J (1970a) Zum Einfrieren von Geweben in Stickstoff-gekühltem Propan. Histochemie 23:44–50

    Google Scholar 

  • Winckler J (1970b) Verwendung gefriergetrockneter Kryostatschnitte für histologische und histochemische Untersuchungen. Histochemie 24:168–186

    Google Scholar 

  • Zabel M, Schiebler TH (1980) Histochemical, autoradiographic and electron microscopic investigations of the renal proximal tubule of male and female rats after castration. Histochemistry 69:225–276

    Google Scholar 

  • Zeller J (1973) Zur Cytochemie der Lysosomen in der Rattenniere unter normalen und experimentellen Bedingungen. Histochemie 35:234–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (SFB 105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jedrzejewski, K., Kugler, P. Peptidases in the kidney and urine of rats after castration. Histochemistry 74, 63–84 (1982). https://doi.org/10.1007/BF00495053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00495053

Keywords

Navigation