Skip to main content
Log in

Immunofluorescent localization of the Rab-GAP protein TBC1D4 (AS160) in mouse kidney

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

TBC1D4 (or AS160) was identified as a Rab-GTPase activating protein (Rab-GAP) that controls insulin-dependent trafficking of the glucose transporter GLUT4 in skeletal muscle cells and in adipocytes. Recent in vitro cell culture studies suggest that TBC1D4 may also regulate the intracellular trafficking of kidney proteins such as the vasopressin-dependent water channel AQP2, the aldosterone-regulated epithelial sodium channel ENaC, and the Na+-K+-ATPase. To study the possible role of TBC1D4 in the kidney in vivo, we raised a rabbit polyclonal antibody against TBC1D4 to be used for immunoblotting and immunohistochemical studies. In immunoblots on mouse kidney homogenates, the antibody recognizes specific bands at the expected size of 160 kDa and at lower molecular weights, which are absent in kidneys of TBC1D4 deficient mice. Using a variety of nephron-segment-specific marker proteins, immunohistochemistry reveals TBC1D4 in the cytoplasm of the parietal epithelial cells of Bowman’s capsule, the thin and thick limbs of Henle’s loop, the distal convoluted tubule, the connecting tubule, and the collecting duct. In the latter, both principal as well as intercalated cells are TBC1D4-positive. Thus, with the exception of the proximal tubule, TBC1D4 is highly expressed along the nephron and the collecting duct, where it may interfere with the intracellular trafficking of many renal transport proteins including AQP2, ENaC and Na+-K+-ATPase. Hence, TBC1D4 may play an important role for the control of renal ion and water handling and hence for the control of extracellular fluid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albiston AL, Yeatman HR, Pham V, Fuller SJ, Diwakarla S, Fernando RN, Chai SY (2011) Distinct distribution of GLUT4 and insulin regulated aminopeptidase in the mouse kidney. Regul Pept 166:83–89

    Article  PubMed  CAS  Google Scholar 

  • Alves DS, Farr GA, Seo-Mayer P, Caplan MJ (2010) AS160 associates with the Na+, K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression. Mol Biol Cell 21:4400–4408

    Article  PubMed  CAS  Google Scholar 

  • Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22:461–470

    Article  PubMed  CAS  Google Scholar 

  • Baus D, Heermeier K, De Hoop M, Metz-Weidmann C, Gassenhuber J, Dittrich W, Welte S, Tennagels N (2008) Identification of a novel AS160 splice variant that regulates GLUT4 translocation and glucose-uptake in rat muscle cells. Cell Signal 20:2237–2246

    Article  PubMed  CAS  Google Scholar 

  • Brosius FC 3rd, Briggs JP, Marcus RG, Barac-Nieto M, Charron MJ (1992) Insulin-responsive glucose transporter expression in renal microvessels and glomeruli. Kidney Int 42:1086–1092

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper S (1996) Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochem Cell Biol 105:261–267

    Article  PubMed  CAS  Google Scholar 

  • Busque SM, Wagner CA (2009) Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 297:F440–F450

    Article  PubMed  CAS  Google Scholar 

  • Butlen D, Vadrot S, Roseau S, Morel F (1988) Insulin receptors along the rat nephron: [125I] insulin binding in microdissected glomeruli and tubules. Pflugers Arch 412:604–612

    Article  PubMed  CAS  Google Scholar 

  • Chabardes-Garonne D, Mejean A, Aude JC, Cheval L, Di Stefano A, Gaillard MC, Imbert-Teboul M, Wittner M, Balian C, Anthouard V, Robert C, Segurens B, Wincker P, Weissenbach J, Doucet A, Elalouf JM (2003) A panoramic view of gene expression in the human kidney. Proc Natl Acad Sci USA 100:13710–13715

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wasserman DH, MacKintosh C, Sakamoto K (2011) Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab 13:68–79

    Article  PubMed  CAS  Google Scholar 

  • Chin E, Zhou J, Bondy C (1993) Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest 91:1810–1815

    Article  PubMed  CAS  Google Scholar 

  • Comellas AP, Kelly AM, Trejo HE, Briva A, Lee J, Sznajder JI, Dada LA (2010) Insulin regulates alveolar epithelial function by inducing Na+/K+-ATPase translocation to the plasma membrane in a process mediated by the action of Akt. J Cell Sci 123:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Dash S, Sano H, Rochford JJ, Semple RK, Yeo G, Hyden CS, Soos MA, Clark J, Rodin A, Langenberg C, Druet C, Fawcett KA, Tung YC, Wareham NJ, Barroso I, Lienhard GE, O’Rahilly S, Savage DB (2009) A truncation mutation in TBC1D4 in a family with acanthosis nigricans and postprandial hyperinsulinemia. Proc Natl Acad Sci USA 106:9350–9355

    Article  PubMed  CAS  Google Scholar 

  • Eguez L, Lee A, Chavez JA, Miinea CP, Kane S, Lienhard GE, McGraw TE (2005) Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab 2:263–272

    Article  PubMed  CAS  Google Scholar 

  • Feraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418

    PubMed  CAS  Google Scholar 

  • Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM (2012) Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13:67–73

    PubMed  CAS  Google Scholar 

  • Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    Article  PubMed  CAS  Google Scholar 

  • Heilig C, Zaloga C, Lee M, Zhao X, Riser B, Brosius F, Cortes P (1995) Immunogold localization of high-affinity glucose transporter isoforms in normal rat kidney. Lab Invest 73:674–684

    PubMed  CAS  Google Scholar 

  • Hemken P, Guo XL, Wang ZQ, Zhang K, Gluck S (1992) Immunologic evidence that vacuolar H+ ATPases with heterogeneous forms of Mr = 31,000 subunit have different membrane distributions in mammalian kidney. J Biol Chem 267:9948–9957

    PubMed  CAS  Google Scholar 

  • Ishikura S, Bilan PJ, Klip A (2007) Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun 353:1074–1079

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Kwon TH (2010) Membrane trafficking of collecting duct water channel protein AQP2 regulated by Akt/AS160. Electrolyte Blood Press 8:59–65

    Article  PubMed  CAS  Google Scholar 

  • Kane S, Sano H, Liu SC, Asara JM, Lane WS, Garner CC, Lienhard GE (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 277:22115–22118

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HK, Zierath JR, Kane S, Krook A, Lienhard GE, Wallberg-Henriksson H (2005) Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes 54:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10:1–12

    PubMed  CAS  Google Scholar 

  • Kim HY, Choi HJ, Lim JS, Park EJ, Jung HJ, Lee YJ, Kim SY, Kwon TH (2011) Emerging role of Akt substrate protein AS160 in the regulation of AQP2 translocation. Am J Physiol Renal Physiol 301:F151–F161

    Article  PubMed  CAS  Google Scholar 

  • Kishore BK, Mandon B, Oza NB, DiGiovanni SR, Coleman RA, Ostrowski NL, Wade JB, Knepper MA (1996) Rat renal arcade segment expresses vasopressin-regulated water channel and vasopressin V2 receptor. J Clin Invest 97:2763–2771

    Article  PubMed  CAS  Google Scholar 

  • Kriz W, Kaissling B (2008) Structural organization of the mammalian kidney. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s The Kidney Physiology and Pathophysiology, vol 1, Academic PressBurlington, San Diego, pp 479–564

    Chapter  Google Scholar 

  • Larance M, Ramm G, Stockli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280:37803–37813

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Butterworth MB, Peters KW, Frizzell RA (2010) AS160 modulates aldosterone-stimulated epithelial sodium channel forward trafficking. Mol Biol Cell 21:2024–2033

    Article  PubMed  CAS  Google Scholar 

  • Lim YS, Chua CE, Tang BL (2011) Rabs and other small GTPases in ciliary transport. Biol Cell 103:209–221

    Article  PubMed  CAS  Google Scholar 

  • Loffing J, Kaissling B (2003) Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 284:F628–F643

    PubMed  CAS  Google Scholar 

  • Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135

    Article  PubMed  CAS  Google Scholar 

  • Loffing J, Pietri L, Aregger F, Bloch-Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B (2000) Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am J Physiol Renal Physiol 279:F252–F258

    PubMed  CAS  Google Scholar 

  • Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027

    PubMed  CAS  Google Scholar 

  • Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, Kaissling B (2004) Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 15:2276–2288

    Article  PubMed  CAS  Google Scholar 

  • Mandon B, Nielsen S, Kishore BK, Knepper MA (1997) Expression of syntaxins in rat kidney. Am J Physiol 273:F718–F730

    PubMed  CAS  Google Scholar 

  • Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int Suppl:S1–6

  • Mendes AI, Matos P, Moniz S, Jordan P (2010) Protein kinase WNK1 promotes cell surface expression of glucose transporter GLUT1 by regulating a Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4)-Rab8A complex. J Biol Chem 285:39117–39126

    Article  PubMed  CAS  Google Scholar 

  • Miinea CP, Sano H, Kane S, Sano E, Fukuda M, Peranen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87–93

    Article  PubMed  CAS  Google Scholar 

  • Mount DB (2006) Membrane trafficking and the regulation of NKCC2. Am J Physiol Renal Physiol 290:F606–F607

    Article  PubMed  CAS  Google Scholar 

  • Murer H, Hernando N, Forster I, Biber J (2003) Regulation of Na/Pi transporter in the proximal tubule. Annu Rev Physiol 65:531–542

    Article  PubMed  CAS  Google Scholar 

  • Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, Bohlick A, Bleich M, Shan Q, Bachmann S (2010) Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol 298:F502–F509

    Article  PubMed  CAS  Google Scholar 

  • Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (1998) Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 5:277–286

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  • Ohse T, Pippin JW, Chang AM, Krofft RD, Miner JH, Vaughan MR, Shankland SJ (2009) The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney Int 76:1225–1238

    Article  PubMed  Google Scholar 

  • Pradervand S, Zuber Mercier A, Centeno G, Bonny O, Firsov D (2010) A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 460:925–952

    Article  PubMed  CAS  Google Scholar 

  • Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    PubMed  CAS  Google Scholar 

  • Ross BD, Espinal J, Silva P (1986) Glucose metabolism in renal tubular function. Kidney Int 29:54–67

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Valenti G, Verbavatz JM, Van Hoek AN, Verkman AS, Ausiello DA, Brown D (1992) Localization of the CHIP28 water channel in rat kidney. Am J Physiol 263:C1225–C1233

    PubMed  CAS  Google Scholar 

  • Sandberg MB, Riquier AD, Pihakaski-Maunsbach K, McDonough AA, Maunsbach AB (2007) ANG II provokes acute trafficking of distal tubule Na+–Cl(−) cotransporter to apical membrane. Am J Physiol Renal Physiol 293:F662–F669

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Roach WG, Peck GR, Fukuda M, Lienhard GE (2008) Rab10 in insulin-stimulated GLUT4 translocation. Biochem J 411:89–95

    Article  PubMed  CAS  Google Scholar 

  • Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbaumer I, Tapp R, Bachmann S (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Physiol 276:F367–F381

    PubMed  CAS  Google Scholar 

  • Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2:REVIEWS3007

    Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Uchida S, Sasaki S, Nitta K, Uchida K, Horita S, Nihei H, Marumo F (1995) Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1. J Clin Invest 95:104–113

    Article  PubMed  CAS  Google Scholar 

  • Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J, Kim GH, Knepper MA (2000) UT-A2: a 55 kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am J Physiol Renal Physiol 278:F52–F62

    PubMed  CAS  Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  PubMed  CAS  Google Scholar 

  • Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J (2008) Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 294:F1373–F1380

    Article  PubMed  CAS  Google Scholar 

  • Werner M, Von Wasielewski R, Komminoth P (1996) Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem Cell Biol 105:253–260

    Article  PubMed  CAS  Google Scholar 

  • White RA, Pasztor LM, Richardson PM, Zon LI (2000) The gene encoding TBC1D1 with homology to the tre-2/USP6 oncogene, BUB2, and cdc16 maps to mouse chromosome 5 and human chromosome 4. Cytogenet Cell Genet 89:272–275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study is part of the M.D. thesis of Natascha Lier. The study was supported by Grants from the Swiss National Science Foundation 310000-122243/1 (to JL) and the Novartis Foundation (to JL). The laboratory of JL is also supported by the National Centre of Competence in Research (NCCR) Kidney.CH and the Zurich Center for Integrative Human Physiology (ZIHP). We gratefully acknowledge the expert technical help of Monique Carrel. Initial immunohistochemical studies were also performed with antibodies against TBC1D4 (AS160), which have been kindly provided by Dr. Gustav E. Lienhard (Dartmouth Medical School, Hanover, NH, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Loffing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lier, N., Gresko, N., Di Chiara, M. et al. Immunofluorescent localization of the Rab-GAP protein TBC1D4 (AS160) in mouse kidney. Histochem Cell Biol 138, 101–112 (2012). https://doi.org/10.1007/s00418-012-0944-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0944-1

Keywords

Navigation