Skip to main content
Log in

Microwave-Induced Magneto-Intersubband Scattering in a Square Lattice of Antidots

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of microwave radiation on low-temperature electron magnetotransport in a square antidot lattice with a period of d ≈ 0.8 µm based on a GaAs quantum well with two occupied energy subbands E1 and E2 is investigated. It is shown that, owing to a significant difference between the electron densities in the subbands, commensurability oscillations of the resistance in the investigated antidot lattice are observed only for the first subband. It is found that microwave irradiation under the cyclotron resonance condition results in the formation of resistance oscillations periodic in the inverse magnetic field in the region of the main commensurability peak. It is established that the period of these oscillations corresponds to the period of magneto-intersubband oscillations. The observed effect is explained by the increase in the rate of intersubband scattering caused by the difference between the electron heating in the subbands E1 and E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Bykov, G. M. Gusev, Z. D. Kvon, V. M. Kudryashev, and V. G. Plyukhin, JETP Lett. 53, 427 (1991).

    ADS  Google Scholar 

  2. E. Vasiliadou, R. Fleischmann, D. Weiss, D. Heitmann, K. V. Klitzing, T. Geisel, R. Bergmann, H. Schweizer, and C. T. Foxon, Phys. Rev. B 52, R8658(R) (1995).

    Article  ADS  Google Scholar 

  3. Z. Q. Yuan, C. L. Yang, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 74, 075313 (2006).

    Article  ADS  Google Scholar 

  4. M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. B 64, 201311(R) (2001).

    Article  ADS  Google Scholar 

  5. P. D. Ye, L. W. Engel, D. C. Tsui, J. A. Simmons, J. R. Wendt, G. A. Vawter, and J. L. Reno, Appl. Phys. Lett. 79, 2193 (2001).

    Article  ADS  Google Scholar 

  6. I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).

    Article  ADS  Google Scholar 

  7. A. A. Bykov, I. S. Strygin, E. E. Rodyakina, W. Mayer, and S. A. Vitkalov, JETP Lett. 101, 703 (2015).

    Article  ADS  Google Scholar 

  8. A. A. Bykov, I. S. Strygin, A. V. Goran, A. K. Kalagin, E. E. Rodyakina, and A. V. Latyshev, Appl. Phys. Lett. 108, 012103 (2016).

    Article  ADS  Google Scholar 

  9. V. M. Polyanovskii, Sov. Phys. Semicond. 22, 1408 (1988).

    Google Scholar 

  10. P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).

    Article  ADS  Google Scholar 

  11. M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 49, 5531 (1994).

    Article  ADS  Google Scholar 

  12. N. S. Averkiev, L. E. Golub, S. A. Tarasenko, and M. Willander, J. Phys.: Condens. Matter 13, 2517 (2001).

    ADS  Google Scholar 

  13. O. E. Raichev, Phys. Rev. B 78, 125304 (2008).

    Article  ADS  Google Scholar 

  14. A. A. Bykov, D. R. Islamov, A. V. Goran, and A. I. Toropov, JETP Lett. 87, 477 (2008).

    Article  ADS  Google Scholar 

  15. S. Wiedmann, G. M. Gusev, O. E. Raichev, T. E. Lamas, A. K. Bakarov, and J. C. Portal, Phys. Rev. B 78, 121301(R) (2008).

    Article  ADS  Google Scholar 

  16. A. A. Bykov, A. V. Goran, and A. K. Bakarov, J. Phys. D: Appl. Phys. 51, 28LT01 (2018).

    Article  Google Scholar 

  17. A. V. Goran, A. A. Bykov, A. I. Toropov, and S. A. Vitkalov, Phys. Rev. B 80, 193305 (2009).

    Article  ADS  Google Scholar 

  18. A. A. Bykov, A. V. Goran, and S. A. Vitkalov, Phys. Rev. B 81, 155322 (2010).

    Article  ADS  Google Scholar 

  19. A. A. Bykov, JETP Lett. 100, 786 (2015).

    Article  ADS  Google Scholar 

  20. K. Ensslin and P. M. Petroff, Phys. Rev. B 41, 12307(R) (1990).

    Article  ADS  Google Scholar 

  21. D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 66, 2790 (1991).

    Article  ADS  Google Scholar 

  22. R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992).

    Article  ADS  Google Scholar 

  23. E. M. Baskin, G. M. Gusev, Z. D. Kvon, A. G. Pogosov, and M. V. Entin, JETP Lett. 55, 678 (1992).

    ADS  Google Scholar 

  24. J. P. Lu and M. Shayegan, Phys. Rev. B 58, 1138 (1998).

    Article  ADS  Google Scholar 

  25. A. A. Bykov, I. S. Strygin, A. V. Goran, D. V. Nomokonov, I. V. Marchishin, A. K. Bakarov, E. E. Rodyakina, and A. V. Latyshev, JETP Lett. 110, 354 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Equipment of the Shared-Access Center Nanostructures, Institute of Semiconductor Physics, Russian Academy of Sciences, was used to fabricate the samples.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-02-00603) and the Division of Materials Research, US National Science Foundation (grant no. 1702594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bykov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 10, pp. 671–676.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.A., Strygin, I.S., Goran, A.V. et al. Microwave-Induced Magneto-Intersubband Scattering in a Square Lattice of Antidots. Jetp Lett. 110, 672–676 (2019). https://doi.org/10.1134/S0021364019220041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019220041

Navigation