Skip to main content
Log in

Crust and mantle of the Tien Shan from data of the receiver function tomography

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A 3-D velocity model of the Tien Shan crust and upper mantle is constructed through the inversion of the receiver functions of P and S waves together with teleseismic traveltime anomalies at nearly 40 local seismic stations. It is found that in the vast central region, where no strong earthquakes have been known over the past century, the S wave velocity at depths of 10–35 km is lower than in adjacent regions by up to 10%. These data are evidence for mechanical weakness of the crust preventing the accumulation of elastic energy. Apparently, the lower velocity and the weakness of the crust are due to the presence of water. The weakness of the crust is one of the possible reasons for the strain localization responsible for the formation of the present Tien Shan but can also be due in part to the young orogenesis. The crustal thickness is largest (about 60 km) in the Tarim-Tien Shan junction zone. The crust-mantle boundary in this region descends by a jump as a result of an increase in the lower crust thickness. This is probably due to the underthrusting of the Tien Shan by the Tarim lithosphere. This causes the mechanically weak lower crust of the Tarim to delaminate and accumulate in nearly the same way as an accretionary prism during the subduction of oceanic lithosphere. In the upper mantle, the analysis has revealed a low velocity anomaly, apparently related to basaltic outflows of the Upper Cretaceous-Early Paleogene. The Cenozoic Bachu uplift in the northern Tarim depression is also associated with the low velocity anomaly. The Naryn depression is characterized by a high velocity in the upper mantle and can be interpreted as a fragment of an ancient platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ye. Abdrakhmatov, S. A. Aldazhanov, B. H. Hager, et al., “Relatively Recent Construction of the Tien Shan Inferred from GPS Measurements of Present-Day Crustal Deformation Rates,” Nature 384, 450–453 (1996).

    Article  Google Scholar 

  2. K. E. Abdrakhmatov, R. Weldon, S. Thompson, et al., “The Origin, Direction, and Rate of Recent Compression of the Central Tien Shan (Kyrgyzstan),” Geol. Geofiz. 42(10), 1585–1609 (2001).

    Google Scholar 

  3. K. Aki, A. Christofferson, and E. S. Husebye, “Determination of the Three-Dimensional Seismic Structure of the Lithosphere,” J. Geophys. Res. 82(2), 277–296 (1977).

    Google Scholar 

  4. P. Bird, “Initiation of Intracontinental Subduction in Himalaya,” J. Geoph. Res. 83, 4975–4987 (1978).

    Google Scholar 

  5. E. V. Burov, M. Kogan, Lyon-Caen, and P. Molnar, “Gravity Anomalies for Deep Structure, and Dynamic Processes beneath the Tien Shan,” Earth Planet. Sci. Lett. 96, 367–383 (1990).

    Article  Google Scholar 

  6. V. S. Burtman, “Structural Geology of Variscan Tien Shan,” Am. J. Sci. 275, 157–186 (1975).

    Google Scholar 

  7. Y. H. Chen, S. W. Roecker, and G. Kosarev, “Elevation of the 410 km Discontinuity beneath the Central Tien Shan: Evidence for a Detached Lithospheric Root,” Geophys. Res. Lett. 24(12), 1531–1534 (1997).

    Article  Google Scholar 

  8. S. Chevrot, L. Vinnik, and J.-P. Montagner, “Global-Scale Analysis of the Mantle Pds Phases,” J. Geophys. Res. 104(B9), 20203–20219 (1999).

    Article  Google Scholar 

  9. G. I. Dobretsov and I. A. Zagruzina, “Young Basaltoid Magmatic Activity in the Eastern Tien Shan,” Dokl. Akad. Nauk SSSR 235, 67–70 (1977).

    Google Scholar 

  10. A. D. Duchkov, Yu. G. Shvartsman, and L. S. Sokolova, “Deep Heat Flow in the Tien Shan: Achievements and Problems,” Geol. Geofiz. 42(10), 1516–1531 (2001).

    Google Scholar 

  11. V. Farra and L. Vinnik, “Upper Mantle Stratification by P and S Receiver Functions,” Geophys. J. Int. 141(3), 699–712 (2000).

    Article  Google Scholar 

  12. S. Ghose, M. Hamburger, and J. Virieux, “Three-Dimensional Velocity Structure and Earthquake Locations beneath the Northern Tien Shan of Kyrgyzstan, Central Asia,” J. Geophys. Res. 103(B2), 2725–2748 (1998).

    Article  Google Scholar 

  13. A. F. Grachev, “Early Cenozoic Magmatism and Geodynamics of North Tien Shan,” Izvestiya, Phys. Solid Earth 35(10), 815–839 (1999).

    Google Scholar 

  14. N. A. Haskell, “Crustal Reflection of Plane P and SV Waves,” J. Geophys. Res. 67, 4751–4767 (1962).

    Google Scholar 

  15. L. Ingber, “Very Fast Simulated Annealing,” Math. Comput. Model. 12, 967–993, (1989).

    Article  Google Scholar 

  16. A. A. Kadik, E. B. Lebedev, and N. I. Khitarov, Water in Magmatic Melts (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  17. B. L. N. Kennett and E. R. Engdahl, “Traveltimes for Global Earthquake Location and Phase Identification,” Geophys. J. Int. 105, 429–465 (1991).

    Google Scholar 

  18. S. H. Kirbi, “Rheology of the Lithosphere,” Rev. Geophys. Space Phys. 21(6), 1458–1487 (1983).

    Google Scholar 

  19. V. I. Knauf, A. V. Mikolaichuk, and E. V. Khristov, “Structural Position of Mesozoic-Cenozoic Volcanism in the Central Tien Shan,” in Seismotectonics and Seismicity of the Tien Shan, Ed. by K. E. Kalmurzaev (Ilim, Frunze, 1980) [in Russian].

    Google Scholar 

  20. D. L. Kohlstedt, B. Evans, and S. J. Mackwell, “Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments,” J. Geophys. Res. 100(B9), 17 587–17 602 (1995).

    Article  Google Scholar 

  21. N. V. Kondorskaya and N. V. Shebalin, New Catalogue of Strong Earthquakes in the USSR from Ancient Times through 1977 (World Data Center A, Solid Earth Geophys., Boulder, 1982).

    Google Scholar 

  22. G. L. Kosarev, N. V. Petersen, L. P. Vinnik, and S. W. Roecker, “Receiver Functions for the Tien Shan Analog Broadband Network: Contrasts in the Evolution of Structures across the Talass-Fergana Fault,” J. Geophys. Res. 98(B3), 4437–4448 (1993).

    Google Scholar 

  23. V. N. Krestnikov and I. L. Nersesov, “Tectonic Structure of the Pamirs and the Tien Shan in Relation to the Moho Topography,” Sov. Geol., No. 11, 36–69 (1962).

  24. C. A. Langston, “Structure under Mount Rainier, Washington, Inferred from Teleseismic Body Waves,” J. Geophys. Res. 84, 4749–4762 (1979).

    Article  Google Scholar 

  25. D. Li., D. Liang, C. Jia C., et al., “Hydrocarbon Accumulation in the Tarim Basin, China,” AAPG Bull. 80(10), 1587–1603 (1996).

    Google Scholar 

  26. D. Li, R. Gao R., D. Lu, et al., “Tarim Underthrust beneath Western Kunlun: Evidence from Wide-Angle Seismic Sounding,” J. Asian Earth Sci. 20, 247–253 (2002).

    Article  Google Scholar 

  27. V. I. Makarov, Neotectonic Structure of the Central Tien Shan (GIN AN SSSR Proc. Issue 307) (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  28. L. I. Makeyeva, L. P. Vinnik, and S. W. Roecker, “Shear-Wave Splitting and Small-Scale Convection in the Continental Upper Mantle,” Nature 358, 144–147 (1992).

    Article  Google Scholar 

  29. N. Metropolis, M. N. Rosenbluth, A. W. Rosenbluth, et al., “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys. 21, 1087–1092 (1953).

    Article  Google Scholar 

  30. P. Molnar and P. Tapponnier, “Cenozoic Tectonics of Asia: Effects of a Continental Collision,” Science 189, 419–426 (1975).

    Google Scholar 

  31. K. Mosegaard and M. Sambridge, “Monte Carlo Analysis of Inverse Problems,” Inverse Problems 18, 29–54 (2002).

    Article  Google Scholar 

  32. E. A. Neil and G. A. Houseman, “Geodynamics of the Tarim Basin and the Tien Shan in Central Asia,” Tectonics 16(4), 571–584 (1997).

    Article  Google Scholar 

  33. S. Oreshin, L. Vinnik, D. Peregoudov, and S. Roecker, “Lithosphere and Asthenosphere of the Tien Shan Imaged by S Receiver Functions,” Geophys. Res. Lett. 29(8) (2002) (doi:1029/2001GL014441).

  34. Ch. Reigber, G. W. Michel, R. Galas, et al., “New Space Geodetic Constraints on the Distribution of Deformations in Central Asia,” Earth Planet. Sci. Lett. 191, 157–165 (2001).

    Article  Google Scholar 

  35. S. Roecker, “Crust and Upper Mantle of the Kyrghyz Tien Shan: Constraints from Preliminary Analysis of GHENGIS Broadband Seismic Data,” Geol. Geofiz. 42(10), 1554–1565 (2001).

    Google Scholar 

  36. S. W. Roecker, T. M. Sabitova, L. P. Vinnik et al., “Three-Dimensional Elastic Wave Velocity Structure of the Western and Central Tien Shan,” J. Geophys. Res. 98, 15 779–15 795 (1993).

    Google Scholar 

  37. K. M. Scharer, D. W. Burbank, J. Chen, et al., “Detachment Folding in the Southwestern Tien Shan-Tarim Foreland, China: Shortening Estimates and Rates,” J. Struct. Geol. 26, 2119–2137 (2004).

    Article  Google Scholar 

  38. A. M. C. Sengor, K. Burke, and J. F. Dewey, “Rifts at High Angles to Orogenic Belts: Tests for Their Origin and the Upper Rhine Graben as an Example,” Am. J. Sci. 278, 24–40 (1978).

    Article  Google Scholar 

  39. E. Sobel and T. A. Dumitru, “Thrusting and Exhumation around the Margins of the Western Tarim Basin during the India-Asia Collision,” J. Geophys. Res. 102(B3), 5043–5063 (1997).

    Article  Google Scholar 

  40. E. R. Sobel and N. Arnaud, “Cretaceous-Paleogene Basaltic Rocks of the Tuyon Basin, NW China and the Kyrgyz Tian Shan: The Trace of a Small Plume,” Lithos. 50, 191–215 (2000).

    Article  Google Scholar 

  41. S. C. Thompson, R. J. Weldon, Ch. M. Rubin, et al., “Late Quarternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia,” J. Geophys. Res. 107(B9) (2203) doi: 10.1029/2001JB000596 (2002).

  42. G. Touissaint, E. Burov, and J.-P. Avuac, “Tectonic Evolution of Continental Collision Zone: A Thermomechanical Numerical Model,” Tectonics 23 TC6003 (2004) doi:10.1029/2003TC001604.

  43. Yu. A. Trapeznikov, E. B. Andreeva, B. Yu. Butalev, et al., “Magnetotelluric Soundings in the Kyrgyz Tien Shan,” Fiz. Zemli, No. 1, 3–20 (1997) [Izvestiya, Phys. Solid Earth 33, 1–17 (1997)].

  44. L. P. Vinnik, A. M. Saiipbekova, and F. N. Yudakhin, “Deep Structure and Dynamics of the Tien Shan Lithosphere,” Dokl. Akad. Nauk SSSR 268(1), 143–146 (1983).

    Google Scholar 

  45. L. Vinnik, “Detection of Waves Converted from P to SV in the Mantle,” Phys. Earth Planet. Inter. 15, 39–45 (1977).

    Article  Google Scholar 

  46. L. P. Vinnik, S. Chevrot, J.-P. Montagner, and F. Guyot, “Teleseismic Travel Time Residuals in North America and Anelasticity of the Asthenosphere,” Phys. Earth Planet. Inter. 116, 93–103 (1999).

    Article  Google Scholar 

  47. L. Vinnik, H. Chenet, J. Gagnepain-Beyneix, and P. Lognonne, “First Seismic Receiver Functions on the Moon,” Geophys. Res. Lett. 28(15), 3031–3034 (2001).

    Article  Google Scholar 

  48. L. Vinnik and V. Farra, “Subcratonic Low-Velocity Layer and Flood Basalts,” Geophys. Res. Lett. 29(4) (2002) (doi:10.1029/2001GL0144064).

  49. L. Vinnik, D. Peregoudov, L. Makeyeva, et al., “Towards 3-D Fabric in the Continental Lithosphere and Asthenosphere: the Tien Shan,” Geophys. Res. Lett. 29(16) (2002a) (doi:10.1029/2001GF014588).

  50. L. P. Vinnik, S. Roecker, G. L. Kosarev, et al., “Crustal Structure and Dynamics of the Tien Shan,” Geophys. Res. Lett. 29(22) (2002b) (doi:10.1029/2002GL015531).

  51. L. P. Vinnik, Ch. Reigber, I. M. Aleshin, et al., Receiver Function Tomography of the Central Tien Shan,” Earth Planet. Sci. Lett. 225, 131–146 (2004).

    Article  Google Scholar 

  52. C. J. Wolfe and F. L. Vernon, “Shear-Wave Splitting at Central Tien Shan: Evidence for Rapid Variation of Anisotropic Patterns,” Geophys. Res. Lett. 25, 1217–1220 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.P. Vinnik, I.M. Aleshin, M.K. Kaban, S.G. Kiselev, G.L. Kosarev, S.I. Oreshin, Ch. Reigber, 2006, published in Fizika Zemli, 2006, No. 8, pp. 14–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinnik, L.P., Aleshin, I.M., Kaban, M.K. et al. Crust and mantle of the Tien Shan from data of the receiver function tomography. Izv., Phys. Solid Earth 42, 639–651 (2006). https://doi.org/10.1134/S1069351306080027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351306080027

PACS numbers

Navigation