Skip to main content
Log in

Siberian traps: Hypotheses and seismology data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Siberian traps are the result of huge basalt eruptions which took place about 250 Ma ago over a vast territory of Siberia. The genesis of Siberian traps is attributed to a mantle plume with a center in the region of Iceland or beneath the central Urals in terms of their present coordinates. The eruption mechanism is associated with delamination—replacement of the mantle lithosphere by the deep magma material. The receiver function analysis of the records from the Norilsk seismic station (NRIL) allows comparing these hypotheses with the factual data on the depth structure of the region of Siberian traps. The S-wave velocity section place the seismic lithosphere/asthenosphere boundary (LAB) at a depth of 155–190 km, commensurate with the data for the other cratons. The mantle lithosphere has a high S-wave velocity characteristic of cratons (4.6–4.8 km/s instead of the typical value 4.5 km/s). The seismic boundary, which is located at a depth around 410 km beneath the continents is depressed by ~10 km in the region of the NRIL station. The phase diagram of olivine/wadsleyite transformation accounts for this depression by a 50–100°С increase in temperature. At the depths of 350–400 km, the S-wave velocity drops due to partial melting. A new reduction in the S-wave velocities is observed at a depth of 460 km. The similar anomalies (deepening of the 410-km seismic boundary and low shear wave velocity at depths of 350–400 and 460–500 km, respectively) were previously revealed in the other regions of the Meso-Cenozoic volcanism. In the case of a differently directed drift of the Siberian lithosphere and underlying mantle at depths down to 500 km, these anomalies are barely accountable. In particular, if the mantle at a depth ranging from 200 to 500 km is fixed, the anomalies should be observed at the original locations where they emerged 250 Ma ago, i.e. thousands of km from the Siberian traps. Our seismic data suggest that despite the low viscosity of the asthenosphere, the mantle drift at depths ranging from 200 to 500 km is correlated with the drift of the Siberian lithospheric plate. Furthermore, the position of the mantle plume beneath the Urals is easier to reconcile with the seismic data than its position beneath Iceland because of the Siberian traps being less remote from the Urals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artemieva, I.M, Global 1 × 1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, no. 1, pp. 245–277.

    Article  Google Scholar 

  • Artemieva, I.M., Cherepanova, Y.V., Herceg, M., Thybo, H., and Arndt, N., Eclogitisation as the cause of the West Siberian Basin subsidence, Abstracts, AGU Fall Meeting, San Francisco, 2013.

  • Bercovici, D. and Karato, S.I., Whole-mantle convection and the transition-zone water filter, Nature, 2003, vol. 425, no. 6953, pp. 39–44.

    Article  Google Scholar 

  • Birch, F, The velocity of compressional waves in rocks to 10 kilobars: 1, J. Geophys. Res., 1960, vol. 65, no. 4, pp. 1083–1102.

    Article  Google Scholar 

  • Biswas, N.N. and Knopoff, L, Exact earth-flattening calculation for Love waves, Bull. Seismol. Soc. Am., 1970, vol. 60, no. 4, pp. 1123–1137.

    Google Scholar 

  • Burke, K., Steinberger, B., Torsvik, T.H., and Smethurst, M.A, Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary, Earth Planet. Sci. Lett., 2008, vol. 265, no. 1, pp. 49–60.

    Article  Google Scholar 

  • Cherepanova, Y.V., Artemieva, I.M, Density heterogeneity of the cratonic lithosphere: a case study of the Siberian Craton, Condwana Res., 2015, vol. 28, no. 4, pp. 1344–1360.

    Article  Google Scholar 

  • Courtier, A.M., Jackson, M.G., Lawrence, J.F., Wang, Z., Lee, C.T.A., Halama, R., Warren, J.M., Workman, R., Xu, W., Hirschmann, M.M., and Larson, A.M, Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots, Earth Planet. Sci. Lett., 2007, vol. 264, no. 1, pp. 308–316.

    Article  Google Scholar 

  • Czamanske, G.K., Gurevitch, V., Fedorenko, V., and Simonov, O, Demise of the Siberian plume: palaeogeographic and palaeotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia, Int. Geol. Rev., 1998, vol. 40, pp. 95–115.

    Google Scholar 

  • Du, Z., Vinnik, L.P., and Foulger, G.R, Evidence from Pto- S mantle converted waves for a flat “660-km” discontinuity beneath Iceland, Earth Planet. Sci. Lett., 2006, vol. 241, no. 1, pp. 271–280.

    Article  Google Scholar 

  • Ernesto, M., Marques, L.S., Piccirillo, E.M., Molina, E.C., Ussami, N., Comin-Chiaramonti, P., and Bellieni, G., Paraná Magmatic Province–Tristan da Cunha plume system: fixed versus mobile plume, petrogenetic considerations and alternative heat sources, J. Volcanol. Geotherm. Res., 2002, vol. 118, no. (1), pp. 15–36.

    Article  Google Scholar 

  • Farra, V. and Vinnik, L, Upper mantle stratification by P and S receiver functions, Geophys. J. Int., 2000, vol. 141, no. 3, pp. 699–712.

    Article  Google Scholar 

  • Fedorenko, V.A., Lichtfoot, P.C., Naldrett, A.J., Czamanske, G.K., Hawkesworth, C.J., Wooden, J.L., and Ebel, D.S, Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia, Int. Geol. Rev., 1996, vol. 38, pp. 99–135.

    Google Scholar 

  • Haskell, N.A, Crustal reflection of plane P and SV waves, J. Geophys. Res., 1962, vol. 67, no. 12, pp. 4751–4768.

    Article  Google Scholar 

  • Hier-Majumder, S. and Courtier, A, Seismic signature of small melt fraction atop the transition zone, Earth Planet. Sci. Lett., 2011, vol. 308, no. 3, pp. 334–342.

    Article  Google Scholar 

  • Ivanov, A.V., Evaluation of different models for the origin of the Siberian traps, in Plate, Plumes and Planetary Processes, Geol. Soc. Amer. Special Paper, Foulger, G.R. and Jurdy, D.M., Eds.,2007, vol. 430, pp. 669–691.

    Google Scholar 

  • Jasbinsek, J. and Dueker, K, Ubiquitous low-velocity layer atop the 410-km discontinuity in the northern Rocky Mountains, Geochem., Geophys., Geosyst., 2007, vol. 8, no. 10, Q10004. doi 10.1029/2007GC001661

    Article  Google Scholar 

  • Jones, A.P., Price, D.G., De Carli, P.S., Price, N.J., and Clegg, R.A., Impact decompression melting: a possible trigger for impact induced volcanism and mantle hotspots? in Impact Markers in the Stratigraphic Record, Koeberl, C. and Martinez-Ruiz, F., Berlin: Springer, 2003, pp. 1–12.

    Google Scholar 

  • Jordan, T.H, The continental tectosphere, Rev. Geophys., 1975, vol. 13, no. 3, pp. 91–119.

    Article  Google Scholar 

  • Kennett, B.L.N. and Engdahl, E.R, Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 1991, vol. 105, pp. 429–465.

    Article  Google Scholar 

  • Keshav, S., Gudfinnsson, G.H., and Presnall, D.C, Melting phase relations of simplified carbonated peridotite at 12–26 GPa in the systems CaO-MgO-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-CO2: highly calcic magmas in the transition zone of the earth, J. Petrol., 2011, vol. 52, no. 11, pp. 2265–2291.

    Article  Google Scholar 

  • King, S.D. and Anderson, D.L, An alternative mechanism of flood basalt formation, Earth Planet. Sci. Lett., 1995, vol. 136, pp. 269–279.

    Article  Google Scholar 

  • Kuzmin, M.I., Yarmolyuk, V.V., and Kravchinsky, V.A, Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province, Earth Sci. Rev., 2010, vol. 102, no. 1, pp. 29–59.

    Article  Google Scholar 

  • Lawver, L.A. and Müller, R.D, Iceland hotspot track, Geology, 1994, vol. 22, pp. 311–314.

    Article  Google Scholar 

  • Lawver, L.A., Grantz, A., and Gahagan, L.M., Plate kinematic evolution of the present Arctic region since the Ordovician, in Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses, Miller, E.L., Grantz, A., and Klemperer, S.L., Eds., Geol. Soc. Am., Spec. Pap.,2002, vol. 360, pp. 333–358.

    Article  Google Scholar 

  • Litasov, K.D, Physicochemical conditions for melting in the Earth’s mantle containing a C-O-H fluid (from experimental data), Rus. Geol. Geophys., 2011, no. 5, pp. 475–492.

    Article  Google Scholar 

  • Morais, I., Vinnik, L., Silveira, G., Kiselev, S., and Matias, L, Mantle beneath the Gibraltar Arc from receiver functions, Geophys. J. Int., 2015, vol. 200, no. 2, pp. 1155–1171.

    Article  Google Scholar 

  • Mosegaard, K. and Vestergaard, P.D., A simulated annealing approach to seismic model optimization with sparse prior information, Geophys. Prosp., 1991, vol. 39, no. 5, pp. 599–611.

    Article  Google Scholar 

  • Oreshin, S., Vinnik, L., Makeyeva, L., Kosarev, G., Kind, R., and Wentzel, F, Combined analysis of SKS splitting and regional P traveltimes in Siberia, Geophys. J. Int., 2002, vol. 1151, no. 2, pp. 393–402.

    Article  Google Scholar 

  • Oreshin, S.I., Vinnik, L.P., Kiselev, S.G., Rai, S.S., Prakasam, K.S., and Treussov, A.V, Deep seismic structure of the Indian shield, western Himalaya, Ladakh and Tibet, Earth Planet. Sci. Lett., 2011, vol. 307, no. 3, pp. 415–429.

    Article  Google Scholar 

  • Owens, T.J., Nyblade, A.A., Gurrola, H., and Langston, C.A, Mantle transition zone structure beneath Tanzania, East Africa, Geophys. Res. Lett., 2000, vol. 27, no. 6, pp. 827–830.

    Article  Google Scholar 

  • Pavlenkova, N.I., Pavlenkova, G.A., and Solodilov, L.N, High velocities in the uppermost mantle of the Siberian craton, Tectonophysics, 1996, vol. 262, no. 1, pp. 51–65.

    Article  Google Scholar 

  • Reichow, M.K., Saunders, A.D., White, R.V., Al’mukhamedov, A.I., and Medvedev, A.L, Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Siberian Traps, Russia, Lithos, 2005, vol. 79, pp. 425–452.

    Article  Google Scholar 

  • Revenaugh, J. and Sipkin, S.A, Seismic evidence for silicate melt atop the 410-km mantle discontinuity, Nature, 1994, vol. 369, no. 6480, pp. 474–476.

    Article  Google Scholar 

  • Rocha, M.P., Schimmel, M., and Assumpção, M, Uppermantle seismic structure beneath SE and Central Brazil from P- and S-wave regional traveltime tomography, Geophys. J. Int., 2011, vol. 184, no. 1, pp. 268–286.

    Article  Google Scholar 

  • Silveira, G., Vinnik, L., Stutzmann, E., Farra, V., Kiselev, S., and Morais, I, Stratification of the Earth beneath the Azores from P and S receiver functions, Earth Planet. Sci. Lett., 2010, vol. 299, no. 1, pp. 91–103.

    Article  Google Scholar 

  • Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.A., and Vasiliev, Y.R, Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, 2011, vol. 477, no. 7364, pp. 312–316.

    Google Scholar 

  • Song, T.R.A., Helmberger, D.V., and Grand, S.P, Lowvelocity zone atop the 410-km seismic discontinuity in the northwestern United States, Nature, 2004, vol. 427, no. 6974, pp. 530–533.

    Article  Google Scholar 

  • Tanton, L.T.E. and Hager, B.H, Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts, Geophys. Res. Lett., 2000, vol. 27, no. 23, pp. 3937–3940.

    Article  Google Scholar 

  • Vinnik, L.P, Detection of waves converted from P to SV in the mantle, Phys. Earth Planet. Inter., 1977, vol. 15, no. 1, pp. 39–45.

    Article  Google Scholar 

  • Vinnik, L.P., Green, R.W.E., and Nicolaysen, L.O, Seismic constraints on dynamics of the mantle of the Kaapvaal craton, Phys. Earth Planet. Inter., 1996a, vol. 95, no. 3, pp. 139–151.

    Article  Google Scholar 

  • Vinnik, L.P., Green, R.W.E., Nicolaysen, L.O., Kosarev, G.L., and Petersen, N.V, Deep seismic structure of the Kaapvaal craton, Tectonophysics, 1996b, vol. 262, no. 1, pp. 67–75.

    Article  Google Scholar 

  • Vinnik, L. and Farra, V, Subcratonic low-velocity layer and flood basalts, Geophys. Res. Lett., 2002, vol. 29, no. 4. doi 10.1029/2001GL014064

  • Vinnik, L.P., Farra, V., and Kind, R, Deep structure of the Afro-Arabian hotspot by S receiver functions, Geophys. Res. Lett., 2004a, vol. 31, no. 11, L11608. doi 10.1029/ 2004GL019574

    Article  Google Scholar 

  • Vinnik, L.P., Reigber, C., Aleshin, I.M., Kosarev, G.L., Kaban, M.K., Oreshin, S.I., and Roecker, S.W, Receiver function tomography of the central Tien Shan, Earth Planet. Sci. Lett., 2004b, vol. 225, no. 1, pp. 131–146.

    Article  Google Scholar 

  • Vinnik, L.P., Foulger, G.R., and Du, Z, Seismic boundaries in the mantle beneath Iceland: a new constraint on temperature, Geophys. J. Int., 2005a, vol. 160, no. 2, pp. 533–538.

    Article  Google Scholar 

  • Vinnik, L., Kurnik, E., and Farra, V, Lehmann discontinuity beneath North America: no role for seismic anisotropy, Geophys. Res. Lett., 2005b, vol. 32, no. 9, L09306. doi 10.1029/2004GL022333

    Article  Google Scholar 

  • Vinnik, L. and Farra, V., S velocity reversal in the mantle transition zone, Geophys. Res. Lett., 2006, vol. 33, no. 18, L18316. doi 10.1029/2006GL027120

  • Vinnik, L. and Farra, V, Low S velocity atop the 410-km discontinuity and mantle plumes, Earth Planet. Sci. Lett., 2007, vol. 262, no. 3, pp. 398–412.

    Article  Google Scholar 

  • Vinnik, L., Ren, Y., Stutzmann, E., Farra, V., and Kiselev, S, Observations of S410P and S350P phases at seismograph stations in California, J. Geophys. Res.: Solid Earth, 2010, vol. 115, no. B5. doi 10.1019/20095B006582

  • Vinnik, L., Silveira, G., Kiselev, S., Farra, V., Weber, M., and Stutzmann, E, Cape Verde hotspot from the upper crust to the top of the lower mantle, Earth Planet. Sci. Lett., 2012, vol. 319, pp. 259–268.

    Article  Google Scholar 

  • Vinnik, L.P., Erduran, M., Oreshin, S.I., Kosarev, G.L., Kutlu, Yu.A., Çakir, Ö., and Kiselev, S.G, Joint inversion of P- and S-receiver functions and dispersion curves of Rayleigh waves: the results for the Central Anatolian Plateau, Izv., Phys. Solid Earth, 2014, vol. 50, no. 5, pp. 622–631.

    Article  Google Scholar 

  • Vinnik, L., Kozlovskaya, E., Oreshin, S., Kosarev, G., Piiponen, K., and Silvennoinen, H, The lithosphere,LAB,LVZ and Lehmann discontinuity under central Fennoscandia from receiver functions, Tectonophysics, 2016, vol. 667, pp. 189–198.

    Article  Google Scholar 

  • White, R. and McKenzie, D., Magmatism at rift zones: the generation of volcanic continental margins and flood basalts, J. Geophys. Res.: Solid Earth, 1989, vol. 94, no. B6, pp. 7685–7729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Vinnik.

Additional information

Original Russian Text © L.P. Vinnik, S.I. Oreshin, L.I. Makeyeva, 2017, published in Fizika Zemli, 2017, No. 3, pp. 14–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinnik, L.P., Oreshin, S.I. & Makeyeva, L.I. Siberian traps: Hypotheses and seismology data. Izv., Phys. Solid Earth 53, 332–340 (2017). https://doi.org/10.1134/S1069351317030144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351317030144

Navigation