Skip to main content
Log in

Neural network-based method for the estimation of the rain rate over oceans by measurements of the satellite radiometer AMSR2

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The rain rate (RR) retrieval method for the RR estimation over ice-free areas of the ocean is presented. Measurements of the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the satellite GCOM-W1 are used. The method is based on the results of the numerical modeling of brightness temperatures of the outgoing microwave radiation of the ocean–atmosphere system and their subsequent conversion into the RR using neural networks. A simplified form of the transfer equation is used. Its errors for the considered wavelengths do not exceed 1 K at an RR of less than 20 mm/h. The method is verified by comparison with the Tropical Rainfall Measuring Mission’s (TRMM) Microwave Instrument (TMI) RR product. As a result of the comparison, the rain rate retrieval error within the range of 20 mm/h is found to be 1 mm/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Behrangi, M. Lersock, S. Wong, and B. Lambrigtsen, “On the quantification of oceanic rainfall using spaceborne sensors,” J. Geophys. Res. 117 (D20) (2012). doi 10.1029/2012.TD017979

    Google Scholar 

  2. T. T. Wilheit, “Some comments on passive microwave measurement of rain,” Bull. Am. Meteorol. Soc. 67 (10), 1226–1232 (1986).

    Article  Google Scholar 

  3. G. W. Petty and K. Li, “Improved passive microwave retrievals of rain rate over land and ocean. Part I: Algorithm description,” J. Atmos. Ocean. Technol. 30 (11), 2493–2508 (2013).

    Article  Google Scholar 

  4. R. J. Kuligowski, “A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates,” J. Hydrometeorol. 3 (2), 112–130 (2002).

    Article  Google Scholar 

  5. C. Kummerow, W. Barnes, T. Kozu, J. Shine, et al., “The tropical rainfall measuring mission (TRMM) sensor package,” J. Atmos. Ocean. Technol. 15 (3), 809–817 (1998).

    Article  Google Scholar 

  6. A. Behrangi, G. Stephens, R. F. Adler, et al., “An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space,” J. Clim. 2 (11), 3957–3965 (2014).

    Article  Google Scholar 

  7. R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution,” J. Hydrometeorol. 5 (3), 487–503 (2004).

    Article  Google Scholar 

  8. A. AghaKouchak, A. Mehran, H. Norouzi, and A. Behrangi, “Systematic and random error components in satellite precipitation data sets,” Geophys. Res. Lett. 39 (9) (2012). doi 10.1029/2012G.L051592

    Google Scholar 

  9. A. Y. Hou and R. K. Kakar, S. Neeck, et al., “The Global Precipitation Measurement (GPM) Mission,” Bull. Am. Meteorol. Soc. 95 (5), 711–722 (2014).

    Google Scholar 

  10. K. A. Hilburn and F. J. Wentz, “Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA),” J. Appl. Meteorol. Climatol. 47 (3), 778–794 (2008).

    Article  Google Scholar 

  11. F. J. Turk, Z. S. Haddad, and Y. You, “Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions,” J. Hydrometeorol. 15 (1), 3–19 (2014).

    Article  Google Scholar 

  12. C. Kummerow and L. Giglio, “A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description,” J. Appl. Meteorol. 33 (1), 3–18 (1994).

    Article  Google Scholar 

  13. R. R. Ferraro, “Special sensor microwave imager derived global rainfall estimates for climatological applications,” J. Geophys. Res. 102 (D14), 16715–16735 (1997).

    Article  Google Scholar 

  14. P. Bauer and P. Schluessel, “Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data,” J. Geophys. Res. 98 (D11), 20737–20759 (1993).

    Article  Google Scholar 

  15. C. Kummerow and R. Ferraro, Algorithm Theoretical Basis Document: EOS/AMSR-E Level-2 Rainfall. Colorado State Univ. Rep., 2007.

    Google Scholar 

  16. B. Lin and W. B. Rossow, “Precipitation water path and rainfall rate estimates over oceans using special sensor microwave imager and International Satellite Cloud Climatology Project data,” J. Geophys. Res. 102 (D8), 9359–9374 (1997).

    Article  Google Scholar 

  17. S. Chandrasekhar, Radiative Transfer (Dover Publications, New York, 1960).

    Google Scholar 

  18. K. Imaoka, M. Kachi, M. Kasahara, et al., “Instrument performance and calibration of AMSR-E and AMSR2,” Int. Arch. Photogramm. Remote Sens. Spec. Inf. Sci 38 (8), 13–18 (2010).

    Google Scholar 

  19. H. J. Liebe and D. H. Layton, Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NTIA Rep. 87–24. Nat. Tech. Inf. Service Boulder, Colorado, 1987.

    Google Scholar 

  20. S. Y. Matrosov and E. M. Shulgina, “Scattering and attenuation of microwave radiation by precipitation,” MGO Trans. 448, 85–94 (1982).

    Google Scholar 

  21. D. L. Wu, J. H. Jiang, and C. P. Davis, “EOS MLS cloud ice measurements and cloudy-sky radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 44 (5), 1156–1165 (2006).

    Article  Google Scholar 

  22. S. Yu. Matrosov, “Microwave radiation transfer in precipitation,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 478, 50–61 (1983).

    Google Scholar 

  23. D. D. Turner, M. P. Cadeddu, U. Lohnert, et al., “Modifications to the water vapor continuum in the microwave suggested by ground-based 150-GHz observations,” IEEE Trans. Geosci. Remote Sens. Lett. 47 (10), 3326–3337 (2009).

    Article  Google Scholar 

  24. T. Meissner and F. J. Wentz, “The complex dielectric constant of pure and sea water from microwave satellite observations,” IEEE Trans. Geosci. Remote Sens. 42 (9), 1836–1849 (2004).

    Article  Google Scholar 

  25. B. Chapron, A. Bingham, F. Collard, et al., “Ocean remote sensing data integration-examples and outlook,” in Proc. Ocean. Sustain. Ocean Obs. Inf. Soc., WPP-306 (ESA, Venice, Italy, 2010). doi 10.5270/OceanObs09

    Google Scholar 

  26. K. Hilburn, D. Smith, and T. Meissner, “Assessment of remote sensing systems version-7 rain rates,” EGU Gen. Assem. Conf. Abstr. 15, 6120 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zabolotskikh.

Additional information

Original Russian Text © E.V. Zabolotskikh, B. Chapron, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 1, pp. 92–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskikh, E.V., Chapron, B. Neural network-based method for the estimation of the rain rate over oceans by measurements of the satellite radiometer AMSR2. Izv. Atmos. Ocean. Phys. 52, 82–88 (2016). https://doi.org/10.1134/S0001433816010114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816010114

Keywords

Navigation