Skip to main content
Log in

Enhanced Quality Control in Pharmaceutical Applications by Combining Raman Spectroscopy and Machine Learning Techniques

  • ATPC 2016
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, we applied machine learning techniques to Raman spectra for the characterization and classification of manufactured pharmaceutical products. Our measurements were taken with commercial equipment, for accurate assessment of variations with respect to one calibrated control sample. Unlike the typical use of Raman spectroscopy in pharmaceutical applications, in our approach the principal components of the Raman spectrum are used concurrently as attributes in machine learning algorithms. This permits an efficient comparison and classification of the spectra measured from the samples under study. This also allows for accurate quality control as all relevant spectral components are considered simultaneously. We demonstrate our approach with respect to the specific case of acetaminophen, which is one of the most widely used analgesics in the market. In the experiments, commercial samples from thirteen different laboratories were analyzed and compared against a control sample. The raw data were analyzed based on an arithmetic difference between the nominal active substance and the measured values in each commercial sample. The principal component analysis was applied to the data for quantitative verification (i.e., without considering the actual concentration of the active substance) of the difference in the calibrated sample. Our results show that by following this approach adulterations in pharmaceutical compositions can be clearly identified and accurately quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Organización Mundial de la Salud, La falsificación de medicamentos: una amenaza creciente. OMS 88, 241–320 (2010)

    Google Scholar 

  2. http://www.cofepris.gob.mx/MJ/Páginas/Normas-Oficiales-Mexicanas.aspx

  3. C.S. Gautam, A. Utreja, G.L. Singal, Spurious and counterfeit drugs: a growing industry in the developing world. Postgrad. Med. J. 85, 251–256 (2009)

    Article  Google Scholar 

  4. S. Nitin, S. Tanushree, Generic drug industry in India: the counterfeit spin. J. Intellect. Prop. Rights 14, 236–240 (2009)

    Google Scholar 

  5. K. Theodore, K. Iosif, I.R. Petros, E.F. Matthew, Counterfeit or substandard antimicrobial drugs: a review of scientific evidence. J. Antimicrob. Chemother. 60, 214–236 (2007)

    Article  Google Scholar 

  6. A. Tariq, C. Imti, S. Helen, Substandard and counterfeit medicines: a systematic review of the literature. BMJ Open 3, 1–7 (2013)

    Google Scholar 

  7. P. Yashwant, Emerging techniques for polymorph detection. Int. J. Chem. Pharm. Anal. 3(1), 2–3

  8. K. Wichmann, A. Klamt, Drug solubility and reaction thermodynamics. Chem. Eng. Pharm. Ind. R&D Manuf. 1, 457–476 (2010)

    Article  Google Scholar 

  9. J. Luyapaert, D.L. Massart, Y. Vander, Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 72, 865–883 (2007)

    Article  Google Scholar 

  10. S.M. Raoul, S.D. Yung, D. Volker, Z. Renato, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. 318, 131–136 (2000)

    Google Scholar 

  11. S.R. Goodyear, R.M. Aspden, Raman microscopy of bone, in Bone Research Protocols, ed. by M.H. Helfrich (Humana Press, Totowa, NJ, 2012), pp. 15–30

    Google Scholar 

  12. R.M. El-Abassy, P. Donfack, A. Materny, Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J. Raman Spectrosc. 40, 1284–1289 (2009)

    Article  Google Scholar 

  13. L. Olga, S.C. Nilam, Y.R. Chanda, W.T. Joseph, R.G. Matthew, V.D. Richard, Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem. 19, 6134–6139 (2005)

    Google Scholar 

  14. S. Ruchita, Y. Agrawal, Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. 57, 163–176 (2011)

    Article  Google Scholar 

  15. L.M. Richard, Raman scattering, Chap. 2, in The Raman spectroscopy for chemical analysis, ed. by L.M. Richard (Wiley, Columbus, Ohio, 2000), pp. 15–30

    Google Scholar 

  16. S. Ewen, D. Geoffrey, Raman spectroscopy, Chap. 3, in The modern Raman spectroscopy: a practical approach, ed. by E. Smith, G. Dent (Wiley, Chichester, West Sussex, 2005), pp. 71–91

    Google Scholar 

  17. C.L. Haynes, A.D. McFarland, R.P. Van Duyne, Surface-enhanced Raman spectroscopy. Am. Chem. Soc. 77, 338 (2005)

    Google Scholar 

  18. S.Y. Lin, An overview of famotidine polymorphs: solid-state characteristics, thermodynamics, polymorphic transformation and quality control. Pharm. Res. 31, 1619–1631 (2014)

    Article  Google Scholar 

  19. S.Y. Lin, W.T. Cheng, The use of hot-stage microscopy and thermal micro-Raman spectroscopy in the study of phase transformation of metoclopramide HCl monohydrate. J. Raman Spectrosc. 43, 1166–1170 (2012)

    Article  Google Scholar 

  20. T. Kojima, S. Onoue, N. Murase, F. Katoh, T. Mano, Y. Matsuda, Crystalline form information from multiwell plate salt screening by use of Raman microscopy. Pharm. Res. 23, 806–812 (2006)

    Article  Google Scholar 

  21. A. Heinz, M. Savolainen, T. Rades, C.J. Strachan, Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy. Eur. J. Pharm. Sci. 32(3), 182–192 (2007)

    Article  Google Scholar 

  22. A.P. Ayala, Polymorphism in drugs investigated by low wavenumber Raman scattering. Vib. Spectrosc. 45, 112–116 (2007)

    Article  Google Scholar 

  23. C.M. McGoverin, T. Rades, K.C. Gordon, Recent pharmaceutical applications of Raman and terahertz spectroscopies. J. Pharm. Sci. 97, 4598–4621 (2008)

    Article  Google Scholar 

  24. S. Stewart, R.J. Priore, M.P. Nelson, P.J. Treado, Raman imaging. Annu. Rev. Anal. Chem. 5, 337–360 (2012)

    Article  Google Scholar 

  25. A. Paudel, D. Raijada, J. Rantanen, Raman spectroscopy in pharmaceutical product design. Adv. Drug Deliv. Rev. 89, 3–20 (2015)

    Article  Google Scholar 

  26. Y. Shen, T. Paul, E. Claire, P. Andrew, P. Nikin, Detection of low levels of amorphous lactose using H/D exchange and FT-Raman spectroscopy. Pharm. Res. 25, 2650–2656 (2008)

    Article  Google Scholar 

  27. Z. Huang, X. Chen, Y. Chen, J. Chen, M. Dou, S. Feng, H. Zeng, R. Chen, Raman spectroscopic characterization and differentiation of seminal plasma. J. Biomed. Opt. 16, 110501 (2011)

    Article  Google Scholar 

  28. M. Hoehse, A. Paul, I. Gornushkin, U. Panne, Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal. Bioanal. Chem. 402, 1443–1450 (2012)

    Article  Google Scholar 

  29. R. Kast, R. Rabah, H. Wills, J. Poulik, G.W. Auner, M.D. Klein, Differentiation of small round blue cell tumors using Raman spectroscopy. J. Pediatr. Surg. 45, 1110–1114 (2010)

    Article  Google Scholar 

  30. F. Nishioka, I. Nakanishi, T. Fujiwara, K. Tomita, The crystal and molecular structure of the β-cyclodextrin inclusion complex with aspirin and salicylic acid. J. Incl. Phenom. 2, 701–714 (1984)

    Article  Google Scholar 

  31. J. Peng, S. Peng, A. Jiang, J. Wei, C. Li, J. Tan, Asymmetric least squares for multiple spectra baseline correction. Anal. Chim. Acta 683, 63–68 (2010)

    Article  Google Scholar 

  32. T. Vankeirsbilck, A. Vercauteren, W. Baeyens, F. Verport, Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal. Chem. 12, 869–877 (2002)

    Article  Google Scholar 

  33. W. Siegfried, H.H. Reinhard, Pharmaceutical applications of mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 57, 1144–1170 (2005)

    Article  Google Scholar 

  34. P.D. Schmitt, E.L. DeWalt, X.Y. Dow, G.J. Simpson, Rapid discrimination of polymorphic crystal forms by nonlinear optical Stokes ellipsometric microscopy. Anal. Chem. 88, 5760–5768 (2016)

    Article  Google Scholar 

  35. J.F. Kauffman, L.M. Batykefer, D.D. Tuschel, Raman detected differential scanning calorimetry of polymorphic transformations in acetaminophen. J. Pharm. Biomed. Anal. 48, 1310–1315 (2008)

    Article  Google Scholar 

  36. ChemImage™, Discrimination of acetaminophen polymorphs using Raman chemical imaging. Application Note (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Guzmán-Cabrera.

Additional information

Selected paper from Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, J.C., Guzmán-Sepúlveda, J.R., Bolañoz Evia, G.R. et al. Enhanced Quality Control in Pharmaceutical Applications by Combining Raman Spectroscopy and Machine Learning Techniques. Int J Thermophys 39, 79 (2018). https://doi.org/10.1007/s10765-018-2391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2391-2

Keywords

Navigation