Skip to main content
Log in

Line creep in paper peeling

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The dynamics of a “peeling front” or an elastic line is studied under creep (constant load) conditions. Our experiments show in most cases an exponential dependence of the creep velocity on the inverse force (mass) applied. In particular, the dynamical correlations of the avalanche activity are discussed here. We compare various avalanche statistics to those of a line with non-local elasticity, and study various measures of the experimental avalanche-avalanche and temporal correlations such as the autocorrelation function of the released energy and aftershock activity. From all these we conclude, that internal avalanche dynamics seems to follow “line depinning”-like behavior, in rough agreement with the depinning model. Meanwhile, the correlations reveal subtle complications not implied by depinning theory. Moreover, we also show how these results can be understood from a geophysical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alava MJ, Niskanen K (2006) The physics of paper. Rep Prog Phys 69: 669–723

    Article  ADS  Google Scholar 

  • Alava MJ, Nukala PKVV, Zapperi S (2006) Statistical models of fracture. Adv Phys 55: 349–476

    Article  ADS  Google Scholar 

  • Bonamy D, Ponson L, Prades S, Bouchaud E, Guillot C (2006) Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. Phys Rev Lett 97: 135504

    Article  PubMed  ADS  CAS  Google Scholar 

  • Braun Th, Kleemann W, Dec J, Thomas PA (2005) Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4. Phys Rev Lett 94: 117601

    Article  PubMed  ADS  Google Scholar 

  • Chauve P, Giamarchi T, Le Doussal P (2000) Creep and depinning in disordered media. Phys Rev E 62: 6241–6267

    ADS  CAS  Google Scholar 

  • Corral A (2004) Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys Rev Lett 92: 10851

    Article  Google Scholar 

  • Davidsen J, Stanchits S, Dresen G (2007) Scaling and universality in rock fracture. Phys Rev Lett 98: 125502

    Article  PubMed  ADS  Google Scholar 

  • Duemmer O, Krauth W (2007) Depinning exponents of the driven long-range elastic string. J Stat Mech P01019. http://www.iop.org/EJ/abstract/1742-5468/2007/01/P01019

  • Fisher DS (1998) Collective transport in random media: from superconductors to earthquakes. Phys Rep 301: 113–150

    Article  Google Scholar 

  • Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res 110: B05S07

    Article  Google Scholar 

  • Helmstetter A, Sornette D (2002) Diffusion of epicenters of earthquake aftershocks, Omori?s law, and generalized continuous-time random walk models. Phys Rev E 66: 061104

    Article  ADS  CAS  Google Scholar 

  • Helmstetter A, Sornette D, Grasso JR (2003) Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws. J Geophys Res 108(B1): 2046

    Article  Google Scholar 

  • Ioffe LB, Vinokur VM (1987) Dynamics of interfaces and dislocations in disordered media. J Phys C 20: 6149–6158

    Article  ADS  Google Scholar 

  • Kagan YY, Knopoff L (1981) Stochastic synthesis of earthquake catalogs. J Geophys Res 86(B4): 2853–2862

    Article  ADS  Google Scholar 

  • Kertész J, Horvath VK, Weber F (1993) Self-affine rupture lines in paper sheets. Fractals 1: 67–74

    Article  Google Scholar 

  • Koivisto J, Rosti J, Alava MJ (2007) Creep of a fracture line in paper peeling. Phys Rev Lett 99: 145504

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kolton AB., Rosso A., Giamarchi T. (2005) Creep motion of an elastic string in a random potential Phys Rev Lett 94: 047002

    Article  PubMed  ADS  Google Scholar 

  • Lemerle S, Ferré J, Chappert C, Mathet V, Giamarchi T, Le Doussal P (1998) Wall creep in an ising ultrathin magnetic film. Phys Rev Lett 80: 849–852

    Article  CAS  Google Scholar 

  • Måløy KJ, Santucci S, Schmittbuhl J, Toussaint R (2006) Local waiting time fluctuations along a randomly pinned crack front. Phys Rev Lett 96: 045501

    Article  PubMed  ADS  Google Scholar 

  • Molchan G (2005) Interevent time distribution in seismicity: a theoretical approach. Pure Appl Geophys 162: 1135–1150

    Article  ADS  Google Scholar 

  • Nattermann T (1987) Interface roughening in systems with quenched random impurities. Europhys Lett 4: 1241–1246

    Article  ADS  CAS  Google Scholar 

  • Nattermann T, Shapir Y, Vilfan I (1990) Interface pinning and dynamics in random systems. Phys Rev B 42: 8577–8586

    Article  ADS  Google Scholar 

  • Ramanathan S, Fisher DS (1997) Dynamics and instabilities of planar tensile cracks in heterogeneous media. Phys Rev Lett 79: 877–880

    Article  ADS  CAS  Google Scholar 

  • Rosso A, Krauth W (2001) Origin of the roughness exponent in elastic strings at the depinning threshold. Phys Rev Lett 87: 187002

    Article  ADS  Google Scholar 

  • Rosso A, Krauth W (2002) Roughness at the depinning threshold for a long-range elastic string. Phys Rev E 65: 025101

    Article  ADS  Google Scholar 

  • Saichev A, Sornette D (2007) Theory of earthquake recurrence times. J Geophys Res 112: B04313

    Article  Google Scholar 

  • Salminen LI, Tolvanen AI, Alava MJ (2002) Acoustic emission from paper fracture. Phys Rev Lett 89: 185503

    Article  PubMed  ADS  CAS  Google Scholar 

  • Salminen LI, Pulakka JM, Rosti J, Alava MJ, Niskanen KJ (2006) Crackling noise in paper peeling. Europhys Lett 73: 55–61

    Article  ADS  CAS  Google Scholar 

  • Santucci S, Vanel L, Ciliberto S (2004) Subcritical statistics in rupture of fibrous materials: experiments and model. Phys Rev Lett 93: 095505

    Article  PubMed  ADS  Google Scholar 

  • Schmittbuhl J, Måløy KJ (1997) Direct observation of a self-affine crack propagation. Phys Rev Lett 78: 3888–3891

    Article  ADS  CAS  Google Scholar 

  • Schmittbuhl J, Roux S, Vilotte JP, Måløy KJ (1995) Interfacial crack pinning: effect of nonlocal interactions. Phys Rev Lett 74: 1787–1790

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sethna JP, Dahmen KA, Myers CR (2001) Crackling noise. Nature 410: 242–250

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tanguy A, Gounelle M, Roux A (1998) From individual to collective pinning: Effect of long-range elastic interactions. Phys Rev E 58: 1577–1590

    Article  CAS  Google Scholar 

  • Tybell T, Paruch P, Giamarchi T, Triscone J-M (2002) Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys Rev Lett 89: 097601

    Article  PubMed  ADS  CAS  Google Scholar 

  • Utsu T, Ogata Y, Matsuura S (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43: 1–33

    Google Scholar 

  • Weiss J, Marsan D (2003) Three-dimensional mapping of dislocation avalanches: clustering and space/time coupling. Science 299: 89–92

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yu Y, Kärenlampi P (1997) On crack stability in paper toughness testing. J Mat Sci 32: 6513–6517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Illa.

Additional information

This article has been previously published in Fracture 151, issue 2, pp. 281–297. doi:10.1007/s10704-008-9258-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosti, J., Koivisto, J., Traversa, P. et al. Line creep in paper peeling. Int J Fract 154, 147–158 (2008). https://doi.org/10.1007/s10704-009-9312-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9312-0

Keywords

Navigation