Skip to main content

Advertisement

Log in

Simulation of forest tree species’ bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This study investigates whether the assumed increase of winter and spring temperatures is depicted by phenological models in correspondingly earlier bud burst (BB) dates. Some studies assume that rising temperatures lead to an earlier BB, but even later BB has been detected. The phenological model PIM (promoter-inhibitor-model) fitted to the extensive phenological database of the German Weather Service was driven by several climate scenarios. This model accounts for the complicated mechanistic interactions between chilling requirements, temperature and photo-period. It predicts BB with a r 2 between 0.41 and 0.62 and a RMSE of around 1 week, depending on species. Parameter sensitivities depict species dependent interactions between growth and chilling requirements as well as photo-period. A mean trend to earlier BB was revealed for the period 2002– 2100, varying between −0.05 and −0.11 days per year, depending on species. These trends are lower than for the period 1951– 2009. Within climate scenario period, trends are decreasing for beech and chestnut, stagnating for birch and increasing for oak. Results suggest that not fulfilled chilling requirements accompanied by an increasing dependency on photo-period potentially limit future BB advancement. The combination of a powerful phenological model, a large scale phenological database and several climate scenarios, offers new insights into the mechanistic comprehension of spring phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ardia D, Boudt K, Carl P, Mullen KM, Peterson BG (2011) Differential evolution with DEoptim: an application to non-convex portfolio optimization. R J 3(1):27–34

    Google Scholar 

  • Basler D (2016) Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central europe. Agric For Meteorol 217(1):10–21

    Article  Google Scholar 

  • Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric For Meteorol 165(1):73–81

    Article  Google Scholar 

  • Basler D, Körner C (2014) Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol 34(4):377–388

    Article  Google Scholar 

  • Bonhomme R (2000) Bases and limits to using ’degree.day’ units. Eur J Agron 13(1):1–10

    Article  Google Scholar 

  • Caffarra A, Donnelly A, Chuine I (2011) Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim Res 46(2):159–170

    Article  Google Scholar 

  • Chuine I, Morin X, Bugmann H (2010) Warming, photoperiods, and tree phenology. Science 329(5989):277–278

    Article  Google Scholar 

  • Dierenbach J, Badeck FW, Schaber J (2013) The plant phenological online database (PPODB): an online database for long-term phenological data. Int J Biometeorol 57(5):1–8

    Article  Google Scholar 

  • Doktor D (2008) Using satellite imagery and ground observations to quantify the effect of intra-annually changing temperature patterns on spring time phenology. PhD thesis, University of London

  • Enke W, Kreienkamp F (2006) WETTREG A1B SCENARIO RUN, UBA PROJECT. Tech. rep., World Data Center for Climate, 10-year slices, e.g. CERA-DB ”WR_A1B_2071_2080”. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=WR_A1B_2071_2080; Additionally, Scenarios A2 and B1 as well as wet and dry realisations were used.

  • European Environment Agency (2012) Climate change, impacts and vulnerability in Europe 2012. ISBN: 978-92-9213-346-7

  • Fu Y, Campioli M, Van Oijen M, Deckmyn G, Janssens I (2012) Bayesian comparison of six different temperature-based budburst models for four temperate tree species. Ecol Mod 230(1):92–100

    Article  Google Scholar 

  • Fu Y, Piao S, Zhao H, Jeong SJ, Wang X, Vitasse Y, Ciais P, Janssens I (2014) Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob Chang Biol 20(12):3743–3755

    Article  Google Scholar 

  • Fu Y, Piao S, Vitasse Y, Zhao H, De Boeck H, Liu Q, Yang H, Weber U, Hnninen H, Janssens I (2015a) Increased heat requirement for leaf flushing in temperate woody species over 19802012: effects of chilling, precipitation and insolation. Global Chang Biol 21(7):2687–2697

    Article  Google Scholar 

  • Fu Y, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Penuelas J, Song Y, Vitasse Y, Zeng Z, Janssens I (2015b) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526(1):104–107

    Article  CAS  Google Scholar 

  • Hänninen H, Kramer K (2007) A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica 41(1):167–205

    Article  Google Scholar 

  • Hänninen H, Tanino K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16(8):412–416

    Article  Google Scholar 

  • Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88(4):531–540

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1132

  • Jacob D, Mahrenholz P (2006) REMO A1B SCENARIO RUN, UBA PROJECT, DATASTREAM 3. Tech. rep., World Data Center for Climate, cERA-DB ”REMO_UBA_A1B_D3”. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=REMO_UBA_A1B_D3; Additionally, Scenarios A2 and B1 were used

  • Jacob D, Elizalde A, Kotova L, Pfeifer S, Moseley C, Kumar P, Rechid D, Teichmann C (2006) Regional climate modelling. http://www.remo-rcm.de, last accessed on 2013-01-08

  • Johnson I, Thornley JHM (1985) Temperature dependence of plant and crop processes. Ann Bot 55(1):1–24

    Google Scholar 

  • Keenan T (2015) Phenology: spring greening in a warming world. Nature 526(7571):48–49

    Article  CAS  Google Scholar 

  • Kramer K, Friend A, Leinonen I (1996) Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests. Clim Res 7(1):31–41

    Article  Google Scholar 

  • Kunstmann H, Schneider K, Forkel R, Knoche R (2004) Impact analysis of climate change for an Alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrol Earth Syst Sci 8(6):1030–1044

    Article  Google Scholar 

  • Lange M (2013) phenmod: auxiliary functions for phenological data processing, modelling and result handling. R package version 1.2-2. http://CRAN.R-project.org/package=phenmod, Last accessed on 2013-08-20

  • Laube J, Sparks T, Estrella N, Höfler J, Ankerst D, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Glob Chang Biol 20(1):170–182

    Article  Google Scholar 

  • Linkosalo T, Carter TR, Hakkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20(17):1175–1182

    Article  Google Scholar 

  • Linkosalo T, Hakkinen R, Hanninen H (2006) Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiol 26(9):1165–1172

    Article  Google Scholar 

  • Meynen E, Schmithüsen J (1962) Handbuch der naturräumlichen Gliederung Deutschlands. Selbstverlag der Bundesanstalt fr Landeskunde, Bad Godesberg

    Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan TF, Cescatti A, O’ Keefe J, Richardson AD (2012) On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9(1):2063–2083

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, O’ Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Global Chang Biol 15(4):961–975

    Article  Google Scholar 

  • Moser L, Fonti P, Buentgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30(2):225–233

    Article  Google Scholar 

  • Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds of latitudinal ecotypes of betula pendula and b. pubescens. Tree Physiol 15(11):697–704

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis D, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press

  • Olsson C, Jönsson A (2014) Process-based models not always better than empirical models for simulating budburst of Norway spruce and birch in europe. Glob Chang Biol 20(11):3492–3507

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Chang Biol 13(1):1860–1872

    Article  Google Scholar 

  • Peñuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324:887–888

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusia J, Garbulsky M, Filella I, Jump A (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Chang Biol 19(8):2303–2338

    Article  Google Scholar 

  • Pearson K (1920) Notes on the history of correlation. Biometrika 13(1):25–45

    Article  Google Scholar 

  • Pope K, Dose V, Da Silva D, Brown P, Leslie C, Dejong T (2013) Detecting nonlinear response of spring phenology to climate change by Bayesian analysis. Global Chang Biol 19(5):1518–1525

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org, ISBN 3-900051-07-0

  • Saxe H, Cannell M, Johnsen B, Ryan M, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399

    Article  CAS  Google Scholar 

  • Schaber J (2012) pheno: auxiliary functions for phenological data analysis. R package version 1.6. http://CRAN.R-project.org/package=pheno, Last accessed on 2013-01-09

  • Schaber J, Badeck FW (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol 22:973–982

    Article  Google Scholar 

  • Schaber J, Badeck FW (2003) Physiology-based phenology models for forest tree species in germany. Int J Biometeorol 47:193–201

    Article  Google Scholar 

  • Schaber J, Badeck FW (2005) Plant phenology in germany over the 20th century. Reg Environ Chang 5:37–46

    Article  Google Scholar 

  • Schnelle F (1955) Pflanzen-Phänologie, 1st. Probleme der Bioklimatologie, Akademische Verlagsgesellschaft Geest & Portig K.-G, Leipzig

  • Sherry R, Zhou X, Gu S, Arnone J, Schimel D, Verburg P, Wallace L, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104(1):198–202

    Article  CAS  Google Scholar 

  • Singer MC, Parmesan C (2010) Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Phil Trans R Soc B-Biol Sci 365(1555):3161–3176

    Article  Google Scholar 

  • Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRES-Szenarios B1, A1B und A2. Endbericht, Umweltbundesamt, Förderkennzeichen 204 41 138

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith M, Smithers RJ, Winfield IJ, Wanless S (2010a) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16(12):3304–3313

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M et al (2010b) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16(12):3304–3313. doi:10.1111/j.1365-2486.2010.02165.x

    Article  Google Scholar 

  • Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151(7):969–980

    Article  Google Scholar 

  • Wareing PF (1956) Photoperiodism in woody plants. Annu Rev Plant Physiol 7:191–214

    Article  CAS  Google Scholar 

  • Wareing PF, Saunders PF (1971) Hormones and dormancy. Annu Rev Plant Physiol 22:261–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the administrators of the UFZ high performance computing system, especially Ben Langenberg and Christian Krause, for their support regarding scientific computation at the UFZ in Leipzig. We would like to thank the German Weather Service (DWD) for the online provision of meteorological observations via WebWerdis and the Deutsches Klimarechenzentrum GmbH (DKRZ) for providing regional climate simulation data via the CERA database. This work was supported by the Federal Ministry for Economic Affairs and Energy Germany (grant number 50EE1218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Lange.

Appendices

Appendix A: Selected promoter-inhibitor-models

The best model for each selected species was chosen, therefore four models were used. For species birch (B. pendula), model number two with a 1 = 0 and no photo-period dependence for the forcing term of promoter and the breakdown term of inhibitor was used:

$$\begin{array}{@{}rcl@{}} {\Delta} I& =& - a_2\ast f_2(T)\ast I\\ {\Delta} P &=& a_3\ast f_3(T)\ast(1-I)\\ &&- a_4\ast\frac{24-L}{24}\ast P \end{array} $$
(9)

For species chestnut, model number eight with a 1 = 0 and no photo-period dependence for the forcing term of promoter was used:

$$\begin{array}{@{}rcl@{}} {\Delta} I &=& - a_2\ast f_2(T)\ast\frac{L}{24}\ast I\\ {\Delta} P &=& a_3\ast f_3(T)\ast(1-I)\\ &&- a_4\ast\frac{24-L}{24}\ast P \end{array} $$
(10)

For species beech, model number eleven with a 1 = 0 was used:

$$\begin{array}{@{}rcl@{}} {\Delta} I &=& - a_2\ast f_2(T)\ast\frac{L}{24}\ast I\\ {\Delta} P &=& a_3\ast f_3(T)\ast(1-I)\ast \frac{L}{24}\\ &&- a_4\ast \frac{24-L}{24}\ast P \end{array} $$
(11)

For species oak, model number twelve with a 4 = 0 was used:

$$\begin{array}{@{}rcl@{}} {\Delta} I &=& a_1\ast\frac{24-L}{24} - a_2\ast f_2(T)\ast\frac{L}{24}\ast I\\ {\Delta} P &=& a_3\ast f_3(T)\ast(1-I)\ast\frac{L}{24} \end{array} $$
(12)

Appendix B: DEoptim parameter settings

The optimization with DEoptim was done with following parameters:

  • population size N P = 400

  • iteration number I t = 100

  • crossover rate C R = 0.9

These parameters determine the fits’ convergence behaviour. The parameter bounds were set to following values:

  • −24 to 32 Celsius for temperature thresholds

  • 0 to 1 for scaling parameters a i

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, M., Schaber, J., Marx, A. et al. Simulation of forest tree species’ bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement. Int J Biometeorol 60, 1711–1726 (2016). https://doi.org/10.1007/s00484-016-1161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1161-8

Keywords

Navigation