Skip to main content
Log in

Chromosomal localization of human aspartate aminotransferase genes by in situ hybridization

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The localization of the human genes for cytosolic and mitochondrial aspartate aminotransferase (AspAT) has been determined by chromosomal in situ hybridization with specific human cDNA probes previously characterized in our laboratory. The cytosolic AspAT gene is localized on chromosome 10 at the interface of bands q241–q251. Mitochondrial AspAT is characterized by a multigene family located on chromosomes 12 (p131–p132), 16 (q21), and 1 (p32–p33 and q25–q31). Genomic DNA from ten blood donors was digested by ten restriction enzymes, and Southern blots were hybridized with the two specific probes. Restriction fragment length polymorphism was revealed in only one case for cytosolic AspAT, with PvuII, while no polymorphism for mitochondrial AspAT was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken DA, Ferguson-Smith MA (1978) Gene dosage evidence for the regional assignment of the GOTs structural gene locus to 10q24→10q25 Cytogenet Cell Genet 22: 468–471

    Google Scholar 

  • Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 9: 2303–2308

    Google Scholar 

  • Braunstein AE (1985) Transamination and transaminases. In: Christen P, Metzler DE (eds) Transaminases. Wiley, New York, pp 2–19

    Google Scholar 

  • Chern CJ, Mellman WJ, Croce CM (1976) Localization of the structural locus for cytoplasmic glutamic-oxaloacetic transaminase to region q24→qter of human chromosome 10. Cytogenet Cell Genet 16: 108–110

    Google Scholar 

  • Cooper AJL, Meister A (1985) Metabolic significance of transamination. In: Christen P, Metzler DE (eds) Transaminases. Wiley, New York, pp 534–563

    Google Scholar 

  • Craig IW, Tolley E, Bobrow M, Heyningen V van (1978) Assignment of a gene necessary for the expression of mitochondrial glutamicoxaloacetic transaminase in human-mouse hybrid cells. Cytogenet Cell Genet 22: 190–194

    Google Scholar 

  • Davidson RG, Cortner JA, Rattazzi MC, Ruddle FH, Lubs HA (1970) Genetic polymorphism of human mitochondrial glutamic oxaloacetic transaminase. Science 169: 391–392

    Google Scholar 

  • Duncan IW, Scott EM, Wright RC (1974) Gene frequencies of erythrocytic enzymes of Alaskan Eskimos and Athabaskan Indians. Am J Hum Genet 26: 244–246

    Google Scholar 

  • Hackel E, Hopkinson DA, Harris H (1972) Population studies on mitochondrial glutamate-oxaloacetate transaminase. Ann Hum Genet 35: 491–496

    Google Scholar 

  • Jeremiah SJ, Povey S, Burley NW, Kietly C, Lee M, Spowart G, Corney G, Cook PJL (1982) Mapping studies on human mitochondrial glutamate oxaloacetate transaminase. Ann Hum Genet 35: 145–152

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Mattei MG, Philip N, Passage E, Moisan JP, Mandel JL, Mattei JF (1985) DNA probe localization at 18p113 band by in situ hybridization and identification of a small supernumerary chromosome. Hum Genet 69: 268–271

    Google Scholar 

  • Mitchell G, Valle D, Willard H, Steel G, Suchaneck M, Brody L (1986) Human ornithine-delta-aminotransferase (OAT): cross-hybridizing fragments mapped to chromosome 10 and Xp11.1-21.1 (abstract). Am J Hum Genet 36: A163

  • Mouse News Letter (1987) Mouse chromosome atlas, map of mouse, man homologies. Mouse News Lett 78: 12–26

    Google Scholar 

  • Nalpas B, Vassault A, Charpin S, Lacour B, Berthelot P (1986) Serum mitochondrial aspartate aminotransferase as a marker of chronic alcoholism: diagnostic value and interpretation in a liver unit. Hepatology 6: 608–614

    Google Scholar 

  • Obaru K, Tsuzuki T, Setoyama C, Shimada K (1988) Structural organization of the mouse aspartate aminotransferase isoenzyme genes. Introns antedate the divergence of cytosolic and mitochondrial isoenzyme genes. J Mol Biol 200: 13–22

    Google Scholar 

  • Okuno F, Ishii H, Kashiwazaki K, Takagi S, Shigeta Y, Arai M, Takagi T, Ebihara Y, Tsuchiya M (1988) Increase in mitochondrial GOT (m-GOT) activity after chronic alcohol consumption clinical and experimental observations. Alcohol 5: 49–53

    Google Scholar 

  • Pavé-Preux M, Ferry N, Bouguet J, Hanoune J, Barouki R (1988) Nucleotide sequence and glucocorticoid regulation of the mRNAs for the isoenzymes of rat aspartate aminotransferase. J Biol Chem 263: 17459–17466

    Google Scholar 

  • Pol S, Bousquet-Lemercier B, Pavé-Preux M, Pawlak A, Berthelot P, Hanoune J, Barouki R (1988) Nucleotide sequence and tissue distribution of mitochondrial aspartate aminotransferase mRNA. Biochem Biophys Res Commun 157: 1309–1315

    Google Scholar 

  • Ramesh V, Eddy R, Shows TB, Shih VE, Gusella JF (1986) Chromosomal assignment of human ornithine aminotransferase (abstract). Am J Hum Genet 39: A166

  • Ritter H, Kömpf J (1979) Human mitochondrial glutamic-oxaloacetic-transaminase, GOTM: formal genetics. Hum Genet 51: 327–329

    Google Scholar 

  • Roderick TH, Davisson MT (1984) In: O'Brien SJ (ed) Genetic maps, vol 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 343–356

    Google Scholar 

  • Sonderegger P, Jaussi R, Christen P, Gehring H (1982) Biosynthesis of aspartate aminotransferases. Both the higher molecular weight precursor of mitochondrial aspartate aminotransferase and the cytosolic isoenzyme are synthesized on free polysomes. J Biol Chem 257: 3339–3345

    Google Scholar 

  • Southern EJ (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Google Scholar 

  • Spritz RA, Emanuel BS, Chern CJ, Mellman WJ (1979) Gene dosage effect: intraband mapping of human soluble glutamic oxaloacetic transaminase. Cytogenet Cell Genet 23: 149–156

    Google Scholar 

  • Tolley E, Van Heyningen V, Brown R, Bobrow M, Craig IW (1980) Assignment to chromosome 16 of a gene necessary for the expression of human mitochondrial glutamate oxaloacetate transaminase (aspartate aminotransferase) (E.C.2.6.1.1.). Biochem Genet 18: 947–954

    Google Scholar 

  • Tsuzuki T, Obaru K, Setoyama C, Shimada K (1987) Structural organization of the mouse mitochondrial aspartate aminotransferase gene. J Mol Biol 198: 21–31

    Google Scholar 

  • Wahl CR, Stern M, Stark G (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76: 3683–3687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pol, S., Bousquet-Lemercier, B., Pavé-Preux, M. et al. Chromosomal localization of human aspartate aminotransferase genes by in situ hybridization. Hum Genet 83, 159–164 (1989). https://doi.org/10.1007/BF00286710

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286710

Keywords

Navigation