Skip to main content
Log in

Effect of thermo-physical properties on turbulent film boiling

Einfluß thermophysikalischer Stoffwerte auf das turbulente Filmsieden

  • Originalarbeiten/Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Turbulent film boiling from a vertical surface is theoretically investigated considering the properties as functions of the temperature. The proposed analytical model is tested making use of the experimental data available in the literature for liquid nitrogen. It is observed that a satisfactory agreement is found between the theory and the experimental data. A new correlation for the prediction of heat transfer coefficients under film boiling conditions is presented.

Zusammenfassung

Das turbulente Filmsieden an einer senkrechten Fläche wird unter Berücksichtigung temperaturabhängiger Stoffwerte theoretisch untersucht. Eine Überprüfung des vorgeschlagenen analytischen Modells erfolgt mit Hilfe von in der Literatur greifbaren experimentellen Daten für flüssigen Stickstoff, wobei befriedigende Übereinstimmung zwischen Theorie und Versuchsdaten festgestellt werden konnte. Ferner wird eine neue Korrelationsbeziehung für die Vorausberechnung der Wärmeübergangskoeffizienten unter Filmsiedebedingungen angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat at constant pressure, KJ/Kg/K

g :

acceleration due to gravity, m/s2

Gr :

modified Grashof number,g(ϱ ls)L 3/(ϱ s/v 2s )

Gr x :

modified local Grashof number, (g (ϱ l − ϱ s )x 3/(ϱ s V 2 s )

h :

average heat transfer coefficient, W/m2/K

h fg :

latent heat of vaporisation, KJ/kg

k :

thermal conductivity, W/m/K

l :

length of the plate, m

Nu :

local Nusseltnumber, (hx/k s )

\(\overline {Nu} \) :

average Nusselt number, (hl/k s )

Pr :

Prandtl number, (µ s C p /k s )

q :

heat flux, W/m2

Ra :

modified Rayleigh number, (GrPr/S)

S :

heat capacity parameter, (C p T s /h fg )(ϕ −1)

T :

temperature, K

T * :

dimensionless temperature, (T − T s )/(T w T s )

ΔT :

temperature difference, (T w T s ),K

u :

velocity inx direction, m/s

u * :

shear velocity, (τ w /ϱ)0.5

u + :

dimensionless velocity, (u/u *)

v :

velocity normal to the direction of flow, m/s

x :

flow direction

X :

local distance

X * :

dimensionless local distance, (gx 3/v 2 s )1/3

y :

normal to the direction of flow

y + :

dimensionless distance normal to the direction of flow, (yu */vs )

π :

density, kg/m3

µ :

dynamic viscosity, kg/ms

v :

kinematic viscosity, m2/s

δ :

vapor boundary layer thickness, m

δ + :

dimensionless vapor boundary layer thickness, (δv */v s )

τ :

shear stress, N/m2

ϕ :

temperature ratio, (T w /T s )

ε m :

eddy diffusivity, m2/s

i :

interface

l :

liquid

m :

indices in Eq. (5)

m 1 :

indices in Eq. (6)

s :

vapor at saturation temperature

x :

local

w :

wall

References

  1. Bankoff, S. G.: Approximate Theory for Film Boiling for Vertical Surfaces. Chem. Eng. Progr. Symp. 30 (1960) 24

    Google Scholar 

  2. Borishansky, U M.: Heat Transfer to Boiling Liquid in Free Convection. Ph.D. thesis, Lenin Library, Moscow 1959

    Google Scholar 

  3. Duckler, A. L; Coury, G. E.: Turbulent Film Boiling on Vertical Surfaces. Proc. Int. 4th Heat Transfer Conference 5, B3.6, Paris, 1970

  4. Frederking, T. H. K.;Clark, J. A.: Natural Convection Film Boiling on A Sphere. Advances in Cryogenic Engineering 18 (1963) 501–506

    Google Scholar 

  5. Jordan, D. P.: Film and Transition Boiling. Advances in Heat Transfer 5, Academic Press, 1968

  6. Kalinin, E. K.; Berlin, I. L; Kstyuk, V. V.: Advances in Heat Transfer 11, 51, Academic Press, 1975

  7. Kato, H.;Nishiwaki, N.;Hirata, M.: Int. J. Heat Mass Transfer 11 (1968) 1117

    Google Scholar 

  8. Merte, H.;Clark, J. A.: Boiling Heat Transfer with Cryogenic Fluids at Standard, Fractional and Nero-Zero Gravity. J. Heat Transfer 86 (1964) 351–360

    Google Scholar 

  9. Merte, H.; Lewis, E. W.: Boiling of Liquid Nitrogen in Reduced Gravity Fields with Sub-Cooling. Heat Transfer Lab, Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 1967

    Google Scholar 

  10. Pomerantz, M. L.: Film Boiling on A Horizontal Tube in Increased Gravity Fields. J. Heat Transfer 86 (1964) 213

    Google Scholar 

  11. Sarma, E K.; Dharma Rao, V; Subrahmanyam, T.: Turbulent Pool Film Boiling on a Horizontal Cylinder - A Conjugate Analysis. Engineering Foundation Conference, published in the ASME Proceedings, New York, USA, 1992

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, P.K., Prasad, P.R.K., Rao, V.D. et al. Effect of thermo-physical properties on turbulent film boiling. Warme- und Stoffubertragung 30, 83–88 (1994). https://doi.org/10.1007/BF00715014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715014

Keywords

Navigation