Skip to main content

Advertisement

Log in

Grassland fragmentation and its influence on woody plant cover in the southern Great Plains, USA

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Woodland and agricultural expansion are major causes of grassland fragmentation. Fire and rainfall play important roles in maintaining grasslands, however, fire activity has been reduced in fragmented landscapes.

Objectives

Quantify the degree to which basic landscape fragmentation metrics could be used as drivers of woody cover potential.

Methods

Woody plant percent cover was calculated between 2004 and 2008 at > 2000 sites. At each site, we calculated these fragmentation metrics for grassland cover type (classified by the National Land Cover Database); # patches, landscape proportion, edge density, largest patch index, effective mesh size and patch cohesion index within 3 circular areas (10 km2, 360 km2 and 3600 km2) surrounding the sampling site. A quantile regression was performed to identify which metrics were useful at predicting the 25th, 50th, 75th or 95th quantile of woody cover distribution.

Results

Grassland proportion and edge density were significant predictors of the woody plant potential (75th and 95th quantile). Woody cover potential was positively associated with edge density suggesting that fragmented areas (i.e., areas with high number of edges) maintained higher woody cover, while grassland proportion was negatively associated with woody plant potential.

Conclusion

We propose that in addition to a lack of fire, fragmented landscapes may facilitate further woodland expansion by reducing natural land and restricting grasslands to smaller, less connected patches, which can maintain higher woody cover. Given current trends in woodland expansion, special attention should be given to areas that are found within a fragmented landscape and climatically prone to woodland expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Scholtz et al. (2018)

Similar content being viewed by others

References

  • Allred BW, Smith WK, Twidwell D, Haggerty JH, Running SW, Naugle DE, Fuhlendorf SD (2015) Ecosystem services lost to oil and gas in North America. Science 348(6233):401–402

    Article  CAS  PubMed  Google Scholar 

  • Andela N, Morton D, Giglio L, Chen Y, van der Werf G, Kasibhatla P, DeFries R, Collatz G, Hantson S, Kloster S (2017) A human-driven decline in global burned area. Science 356(6345):1356–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In: Briske DD (ed) Rangeland systems: processes, management and challenges. Springer International Publishing, Cham, pp 25–84

    Chapter  Google Scholar 

  • Archer SR, Predick KI (2014) An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J Ecol 102(6):1394–1407

    Article  Google Scholar 

  • Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion: land use, climate or CO2? Clim Change 29(1):91–99

    Article  Google Scholar 

  • Baldi G, Paruelo JM (2008) Land-Use and Land Cover Dynamics in South American Temperate Grasslands. Ecol Soc 13(2):1–10

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394

    Article  PubMed  Google Scholar 

  • Briggs JM, Hoch GA, Johnson LC (2002a) Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to Juniperus virginiana forest. Ecosystems 5(6):578–586

    Article  Google Scholar 

  • Briggs JM, Knapp AK, Blair JM, Heisler JL, Hoch GA, Lett MS, McCarron JK (2005) An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. Bioscience 55(3):243–254

    Article  Google Scholar 

  • Briggs JM, Knapp AK, Brock BL (2002b) Expansion of woody plants in tallgrass prairie: a fifteen-year study of fire and fire-grazing interactions. Am Midl Nat 147(2):287–294

    Article  Google Scholar 

  • Browning DM, Archer SR, Asner GP, McClaran MP, Wessman CA (2008) Woody plants in grasslands: post-encroachment stand dynamics. Ecol Appl 18(4):928–944

    Article  PubMed  Google Scholar 

  • Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South African savannas: > 50 years of data suggests CO2 as a driver. Global Change Biol 18(2):675–684

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2(10):529–536

    Article  Google Scholar 

  • Coppedge BR, Engle DM, Fuhlendorf SD, Masters RE, Gregory MS (2001) Landscape cover type and pattern dynamics in fragmented southern Great Plains grasslands, USA. Landscape Ecol 16(8):677–690

    Article  Google Scholar 

  • Cramer VA, Hobbs RJ (2002) Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: impacts and possible management responses. Austral Ecol 27(5):546–564

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Article  Google Scholar 

  • Devine AP, McDonald RA, Quaife T, Maclean IM (2017) Determinants of woody encroachment and cover in African savannas. Oecologia 183(4):939–951

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Giulio M, Holderegger R, Tobias S (2009) Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J Environ Manag 90(10):2959–2968

    Article  Google Scholar 

  • Donovan VM, Wonkka CL, Twidwell D (2017) Surging wildfire activity in a grassland biome. Geophys Res Lett 44(12):5986–5993

    Article  Google Scholar 

  • Duncan BW, Schmalzer PA (2004) Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landscape Ecol 19(2):153–165

    Article  Google Scholar 

  • Egbert SL, Park S, Price KP, Lee R-Y, Wu J, Nellis MD (2002) Using conservation reserve program maps derived from satellite imagery to characterize landscape structure. Comput Electron Agric 37(1–3):141–156

    Article  Google Scholar 

  • Eidenshink J, Schwind B, Brewer K, Zhu Z-L, Quayle B, Howard S (2007) Project for monitoring trends in burn severity. Fire Ecol 3(1):3–21

    Article  Google Scholar 

  • Engle DM, Coppedge BR, Fuhlendorf SD (2008) From the dust bowl to the green glacier: human activity and environmental change in Great Plains grasslands. In: Van Auken OW (ed) Western North American Juniperus Communities. Springer, New York, pp 253–271

    Chapter  Google Scholar 

  • Fensham RJ, Fairfax RJ, Archer SR (2005) Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. J Ecol 93(3):596–606

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16(3):265–280

    Article  Google Scholar 

  • Fletcher JRJ, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85(10):1017–1030

    Article  Google Scholar 

  • Fuhlendorf S, Engle D (2004) Application of the fire–grazing interaction to restore a shifting mosaic on tallgrass prairie. J Appl Ecol 41(4):604–614

    Article  Google Scholar 

  • Fuhlendorf SD, Fynn RW, McGranahan DA, Twidwell D (2017) Heterogeneity as the basis for rangeland management. In: Briske DD (ed) Rangeland systems: processes, management and challenges. Springer, New York, pp 169–196

    Chapter  Google Scholar 

  • Han W, Yang Z, Di L, Mueller R (2012) CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agric 84:111–123

    Article  Google Scholar 

  • Hempson GP, Archibald S, Bond WJ (2017) The consequences of replacing wildlife with livestock in Africa. Sci Rep 7(1):17196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-representing a decade of land cover change information. Photogramm Eng Remote Sens 81(5):345–354

    Google Scholar 

  • Jaeger JA (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15(2):115–130

    Article  Google Scholar 

  • Jongman RHG (2002) Homogenisation and fragmentation of the European landscape: ecological consequences and solutions. Landscape Urban Plan 58(2):211–221

    Article  Google Scholar 

  • Koenker R (2013) Quantreg: quantile regression. R package version. https://doi.org/10.4172/2155-6180.1000354

    Article  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264(5165):1581–1584

    Article  CAS  PubMed  Google Scholar 

  • Limb RF, Fuhlendorf SD, Engle DM, Miller RF (2016) Synthesis paper: assessment of research on rangeland fire as a management practice. Rangel Ecol Manag 69(6):415–422

    Article  Google Scholar 

  • Liu J, Wilson M, Hu G, Liu J, Wu J, Yu M (2018) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landscape Ecol 33(3):341–352

    Article  Google Scholar 

  • Lustig A, Stouffer DB, Roigé M, Worner SP (2015) Towards more predictable and consistent landscape metrics across spatial scales. Ecol Indic 57:11–21

    Article  Google Scholar 

  • McGarigal K (2014) FRAGSTATS help. Documentation for FRAGSTATS 4

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12(2):335–345

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps

  • Mohler R, Goodin D (2012) Mapping burned areas in the Flint Hills of Kansas and Oklahoma, 2000–2010. Great Plains Res 22:15–25

    Google Scholar 

  • NRI Survey (2013a) http://www.nrisurvey.org/nrcs/Grazingland/2012/instructions/instruction.htm

  • NRI Survey (2013b) http://www.nrisurvey.org/nrcs/Grazingland/2013/instructions/R-ch3_13bvf.pdf

  • O’ Neill R, Hunsaker C, Timmins SP, Jackson B, Jones K, Riitters KH, Wickham JD (1996) Scale problems in reporting landscape pattern at the regional scale. Landscape Ecol 11(3):169–180

    Article  Google Scholar 

  • Omernik JM (1995) Level III ecoregions of the continental United States. Corvallis Environmental Research Laboratory, US Environmental Protection Agency, Corvallis

    Google Scholar 

  • Pausas JG, Dantas VdL (2017) Scale matters: fire-vegetation feedbacks are needed to explain tropical tree cover at the local scale. Global Ecol Biogeogr 26(4):395–399

    Article  Google Scholar 

  • PRISM Climate Group (2004) http://prism.oregonstate.edu, Oregon State University. Available from http://prism.oregonstate.edu. Accessed 15 October 2015

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation Statistical Computing, Vienna, (3.2.2 edn.), Vienna

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles. https://doi.org/10.1029/2007GB002952

    Article  Google Scholar 

  • Ratajczak Z, Briggs JM, Goodin DG, Luo L, Mohler RL, Nippert JB, Obermeyer B (2016) Assessing the potential for transitions from tallgrass prairie to woodlands: are we operating beyond critical fire thresholds? Rangel Ecol Manag 69(4):280–287

    Article  Google Scholar 

  • Ratajczak Z, Nippert JB, Briggs JM, Blair JM (2014) Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of North America. J Ecol 102(6):1374–1385

    Article  Google Scholar 

  • Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93(4):697–703

    Article  PubMed  Google Scholar 

  • Samson FB, Knopf FL, Ostlie WR (2004) Great Plains ecosystems: past, present, and future. Wildl Soc Bull 32(1):6–15

    Article  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438(7069):846–849

    Article  CAS  PubMed  Google Scholar 

  • Sankaran M, Ratnam J, Hanan N (2008) Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecol Biogeogr 17(2):236–245

    Article  Google Scholar 

  • Scholtz R, Fuhlendorf SD, Archer SR (2018) Climate-fire interactions constrain potential woody plant cover and stature in North American Great Plains grasslands. Biogeogr, Global Ecol. https://doi.org/10.1111/GEB.12752

    Book  Google Scholar 

  • Scholtz R, Polo JA, Fuhlendorf SD, Duckworth GD (2017) Land cover dynamics influence distribution of breeding birds in the Great Plains, USA. Biol Conserv 209:323–331

    Article  Google Scholar 

  • Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77(4):1210–1225

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334(6053):230–232

    Article  CAS  PubMed  Google Scholar 

  • Stevens N, Lehmann CE, Murphy BP, Durigan G (2016) Savanna woody encroachment is widespread across three continents. Global Change Biol 23(1):235–244

    Article  Google Scholar 

  • Symstad AJ, Leis SA (2017) Woody encroachment in northern great plains grasslands: perceptions, actions, and needs. Nat Areas J 37(1):118–127

    Article  Google Scholar 

  • Tanner EP, Fuhlendorf SD (2018) Impact of an agri-environmental scheme on landscape patterns. Ecol Indic 85:956–965

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

    Article  CAS  PubMed  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr 67(4):411–433

    Article  Google Scholar 

  • Twidwell D, Rogers WE, Fuhlendorf SD, Wonkka CL, Engle DM, Weir JR, Kreuter UP, Taylor CA (2013) The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Front Ecol Environ 11(s1):64–71

    Article  Google Scholar 

  • Twidwell D, Wonkka CL, Sindelar MT, Weir JR (2015) First approximations of prescribed fire risks relative to other management techniques used on private lands. PLoS ONE 10(10):e0140410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twine W (2005) Socio-economic transitions influence vegetation change in the communal rangelands of the South African lowveld. Afr J Range Forage Sci 22(2):93–99

    Article  Google Scholar 

  • USDA Natural Resources Conservation Service (2015) The National Resources Inventory Grazing Lands On-Site Database, 2004–2014 (Unreleased). Compiled by the Resource Inventory Division. Available from http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/. Accessed October 20 2016

  • VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2014) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version: 1.1-221

  • Venter ZS, Hawkins HJ, Cramer MD (2017) Implications of historical interactions between herbivory and fire for rangeland management in African savannas. Ecosphere 8(10):362

    Article  Google Scholar 

  • Wang J, Xiao X, Qin Y, Dong J, Geissler G, Zhang G, Cejda N, Alikhani B, Doughty RB (2017) Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sens Environ 190:233–246

    Article  Google Scholar 

  • Wessels K, Mathieu R, Erasmus B, Asner G, Smit I, Van Aardt J, Main R, Fisher J, Marais W, Kennedy-Bowdoin T (2011) Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa. For Ecol Manag 261(1):19–29

    Article  Google Scholar 

  • Wessman CA, Archer S, Johnson LC, Asner GP (2012) Woodland expansion in US grasslands. In: Guttman G et al (eds) Land change science. Springer, New York, pp 185–208

    Chapter  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397

    Article  Google Scholar 

  • Wimberly MC, Narem DM, Bauman PJ, Carlson BT, Ahlering MA (2018) Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol Conserv 217:121–130

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation (Grant No. OIA-1301789 and DEB-1413900). Special thanks to Loretta Metz, USDA-NRCS Resource Assessment Division, Conservation Effects Assessment Project, Grazing Lands Component and the USDA-NRCS Resource Inventory Division, National Resources Inventory, Grazing Land On-Site Data Study team. Thanks to C. Duquette for comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scholtz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholtz, R., Polo, J.A., Tanner, E.P. et al. Grassland fragmentation and its influence on woody plant cover in the southern Great Plains, USA. Landscape Ecol 33, 1785–1797 (2018). https://doi.org/10.1007/s10980-018-0702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0702-4

Keywords

Navigation