Skip to main content
Log in

Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Bio-shock tubes (BSTs) can approximately simulate the typical blast waves produced by nuclear or chemical charge explosions for use in biological damage studies. The profile of an ideal blast wave in air is characterized by the overpressure, the negative pressure, and the positive pressure duration, which are determined by the geometric configurations of BSTs. Numerical experiments are carried out using the Eulerian equations by the dispersion-controlled dissipative scheme to investigate the effect of different structural components on ideal blast waveforms. The results show that cylindrical and conical frustum driver sections with an appropriate length can produce typical blast wave profiles, but a flattened peak pressure may appear when using a tube of a longer length. Neither a double-expansion tube nor a shrinkage tube set in BSTs is practical for the production of an ideal blast waveform. In addition, negative pressure recovery will occur, exceeding the ambient pressure with an increase in pressure in the vacuum section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Philips, Y.Y.: Primary blast injuries. Ann. Emerg. Med. 15(12), 1446–1450 (1986). doi:10.1016/S0196-0644(86)80940-4

  2. Elsayed, N.M.: Toxicology of blast overpressure. Toxicology 121, 1–15 (1997). doi:10.1016/S0300-483X(97)03651-2

    Article  Google Scholar 

  3. Mayorga, M.A.: The pathology of primary blast overpressure injury. Toxicology 121, 17–28 (1997). doi:10.1016/S0300-483X(97)03652-4

    Article  Google Scholar 

  4. Stuhmiller, J.H.: Biological response to blast overpressure: A summary of modeling. Toxicology 121, 91–103 (1997). doi:10.1016/S0300-483X(97)03658-5

    Article  Google Scholar 

  5. Chavko M., Koller W.A., Prusaczyk W.K., McCarron R.M.: Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods 159, 277–281 (2007). doi:10.1016/j.jneumeth.2006.07.018

  6. Chavko, M., Watanabe, T., Adeeb, S., Lankasky, J., Ahlers, S.T., McCarron, R.M.: Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J. Neurosci. Methods 195, 61–66 (2011). doi:10.1016/j.jneumeth.2010.11.019

    Article  Google Scholar 

  7. Ling, G., Bandak, F., Armonda, R., Grant, G., Ecklund, J.: Explosive blast neurotrauma. J. Neurotrauma 26(6), 815–825 (2009). doi:10.1089/neu.2007.0484

    Article  Google Scholar 

  8. Skotak, M., Wang, F., Alai, A., Holmberg, A., Harris, S., Switzer, R.C., Chandra, N.: Rat injury model under controlled field-relevant primary blast conditions: Acute response to a wide range of peak overpressure. J. Neurotrauma 30(13), 1147–1160 (2013). doi:10.1089/neu.2012.2652

    Article  Google Scholar 

  9. Nakagawa, A., Manley, G.T., Gean, A.D., Ohtani, K., Armonnda, R., Tsukamoto, A., Yamamoto, H., Takayama, K., Tominaga, T.: Mechanisms of primary blast-induced traumatic brain injury: Insights from shock-wave research. J. Neurotrauma 28(6), 1101–1119 (2011). doi:10.1089/neu.2010.1442

    Article  Google Scholar 

  10. Chandra, N., Ganpule, S., Kleinschmit, N.N., Feng, R., Holmberg, A.D., Sundaramurthy, A., Selvan, V., Alai, A.: Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Wave 22, 403–415 (2012). doi:10.1007/s00193-012-0399-2

    Article  Google Scholar 

  11. Richmond, D.R., Clare, V.R., Goldizen, V.C., Pratt, D.E., Sanchez, R.T., White, C.S.: Biological effects of overpressure. II. A shock tube utilized to produce sharp-rising overpressure of 400 milliseconds duration and its employment in biomedical experiments. Aerospace Med. 32, 997–1008 (1961)

    Google Scholar 

  12. Wang, Z.G., Sun, L.Y., Yang, Z.H., Leng, H.G., Jiang, J.X., Yu, H.R., Gu, J.H., Li, Z.F.: Development of serial bio-shock tubes and their application. Chin. Med. J. 111(2), 109–113 (1998)

    Google Scholar 

  13. Leng, H.G., Wang, Z.G., Yang, Z.H., Li, X.Y., Yu, H.R., Gu, J.H., Li, Z.F., Li, Z.H.: A biological shock tube and an experimental study on animal tolerance to blast wave. Explos. Shock Waves 13(3), 272–279 (1993). (in Chinese)

    Google Scholar 

  14. Courtney, M.W., Courtney, A.C.: A table-top blast driven shock tube. Rev. Sci. Instrum. 81(12), 126103 (2010). doi:10.1063/1.3518970

    Article  Google Scholar 

  15. Courtney, A.C., Andrusiv, L.P., Courtney, M.W.: Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects. Rev. Sci. Instrum. 83, 045111 (2012). doi:10.1063/1.3702803

    Article  Google Scholar 

  16. Sundaramurthy, A., Chandra, N.: A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube. Front Neurol. 5, 253 (2014). doi:10.3389/fneur.2014.00253

    Article  Google Scholar 

  17. Stewart, J.B., Pecora, C.: Explosively driven air blast in a conical shock tube. Rev. Sci. Instrum. 86(3), 035108 (2015). doi:10.1063/1.4914898

  18. Jiang, Z.L.: On dispersion-controlled principles for non-oscillatory shock-capturing schemes. Acta Mech. Sin. 20(1), 1–15 (2004). doi:10.1007/BF02484239

    Article  MathSciNet  Google Scholar 

  19. Jiang, Z.L., Takayama, K.: An investigation into the validation of numerical solution of complex flowfields. J. Comput. Phys. 151, 479–497 (1999). doi:10.1006/jcph.1999.6186

    Article  MATH  Google Scholar 

  20. Hu, Z.M., Wang, C., Jiang, Z.L., Khoo, B.C.: On the numerical technique for the simulation of hypervelocity test flows. Comput. Fluids 106, 12–18 (2015). doi:10.1016/j.compfluid.2014.09.039

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11532014

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Hu.

Additional information

Communicated by C. Needham and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.D., Hu, Z.M. & Jiang, Z.L. Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile. Shock Waves 27, 771–779 (2017). https://doi.org/10.1007/s00193-017-0716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0716-x

Keywords

Navigation