Skip to main content
Log in

Provenance of Jurassic siliciclastic deposits, determined by geochemistry and petrology: a case study from a Cimmerian intramontane basin, the Binalud Mountains, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Jurassic Bazeh-Howz Formation is a succession of braided river siliciclastics deposited in an intramontane basin. Three major types of facies, conglomerate, sandstone and shale, have been identified. Conglomerates are mainly monomict and polymict orthoconglomerates. The sandstones are quartzarenites, sublitharenites, feldspathic litharenites and phyllarenites. Fine-grained deposits represent more than 65% of the strata, and commonly alternate rhythmically with siltstone and very fine-grained sandstone. Bulk rock geochemistry suggests felsic, mafic and ophiolite rocks as well as Proterozoic recycled sandstones as the source of the Bazeh-Howz sediments. According to petrographic data, the main tectonic origins of the studied sediments are a recycled orogen, passive margin, magmatic arc basin, rifted continental margin and even a subduction zone. Trace element ratios such as Th-Sc-Zr/10 indicate that the sediments of the Bazeh-Howz Formation are mainly derived from a continental island arc. Also, the La-Th-Sc trace element ratio indicates a continental island-arc origin of the sandstones and shales. The rocks formed in the context of the Early Cimmerian collision in northeastern Iran became part of the rising Cimmerian mountain belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran, Tehran, p 558

    Google Scholar 

  • Aghanabati A, Shahrabi M (1987) Geological quadrangle map no. K.4. Mashhad. Geological Survey of Iran, Tehran

    Google Scholar 

  • Alavi M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geol Soc Am Bull 103:983–992

    Google Scholar 

  • Alavi M (1992) Thrust tectonic of the Binalood region, NE Iran. Tectonophysics 11:360–370

    Google Scholar 

  • Alavi M, Vaziri H, Seyed-Emami K, Lasemi Y (1997) The Triassic and associated rocks of the Nakhlak and Aghdarbabd areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geol Soc Am Bull 109:1563–1575

    Google Scholar 

  • Almasoud FI, Usman AR, Al-Farraj AS (2015) Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis. Arab J Geosci 8(3):1691–1703

    Google Scholar 

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas 26:764–782

    Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297

    Google Scholar 

  • Bakkiaraj D, Nagendra R, Nagarajan R, Armstrong-Altrin JS (2010) Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery Basin, southern India: implications for provenance. J Geol Soc India 76:453–467

    Google Scholar 

  • Bauluz B, Mayayo MJ, Fernandez-Nieto C, Gonzalez-Lopez JM (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Google Scholar 

  • Blatt H, Middleton GV, Murray R (1980) Origin of sedimentary rocks, 2nd edn. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  • Boggs SJ (1992) Petrology of sedimentary rocks. Macmillan Publishing Co., New York

    Google Scholar 

  • Bracciali L, Marroni M, Pandolfi L, Rocchi S (2007) Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. In: Arribas J, Critelli S, Johnsson MJ (eds) Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry. Geological Society of America Special Paper 420:73–93

  • Brunet MF, Korotaev MV, Ershov AV, Nikishin AM (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Sediment Geol 156:119–148

    Google Scholar 

  • Cant DJ, Stockmal S (1989) The Alberta foreland basin: relationship between stratigraphy and Cordilleran terrane-accretion events. Can J Earth Sci 26:1964–1975

    Google Scholar 

  • Caracciolo L, Le Pera E, Muto F, Perri F (2011) Sandstone petrology and mudstone geochemistry of the Peruc-Koryacany Formation (Bohemian Cretaceous Basin, Czech Republic). Int Geol Rev 53:1003–1031

    Google Scholar 

  • Cardenas A, Girty GH, Hanson AD, Lahren MM (1996) Assessing differences in composition between low metamorphic grade mudstone and high-grade schists using logratio techniques. J Geol 104:279–293

    Google Scholar 

  • Chiang CS, Yu HS, Chou YW (2004) Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res 16:65–78

    Google Scholar 

  • Corcoran PL, Muller WU, Padgham WA (1999) Influence of tectonism and climate on lithofacies distribution and sandstone and conglomerate composition in the Arcean Beaulieu Rapids Formation, Northwest Territories, Canada. Precambrian Res 95:175–204

    Google Scholar 

  • Cullers L (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58(22):4955–4972

    Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Google Scholar 

  • Cullers RL, Podkovyrov VN (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res 104:77–93

    Google Scholar 

  • Cullers RL, Barret T, Carlson R, Robinson B (1987) Rare earth element and mineralogical changes in Holocene soil and stream sediments: a case study in the Wet Mountains, Colorado, USA. Chem Geol 63:275–295

    Google Scholar 

  • Dabard MP (1990) Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sediment Geol 69:45–58

    Google Scholar 

  • Das BK, Al-Mikhlafi AS, Kaur P (2006) Geochemistry of Mansar Lake sediments, Jammu, India: implication for source-area weathering, provenance, and tectonic setting. J Asian Earth Sci 26:649–668

    Google Scholar 

  • de Araújo CEG, Pinéo TRG, Caby R, Costa FG, Cavalcante JC, Vasconcelos AM, Rodrigues JB (2010) Provenance of the Novo Oriente Group, southwestern Ceará Central Domain, Borborema Province (NE-Brazil): a dismembered segment of a magma-poor passive margin or a restricted rift related basin? Gondwana Res 18:497–513

    Google Scholar 

  • DeCelles PG, Giles KA (1996) Foreland basin systems. Basin Res 8:105–123

    Google Scholar 

  • Dey S, Rai AK, Chaki A (2009) Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami Basin, Karnataka, southern India: evidence from sandstone petrography and geochemistry. J Asian Earth Sci 34:703–715

    Google Scholar 

  • Dickinson WR (1985) Interpreting provenance relation from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of Arenites. D. Reidel Publishing Company, Dordrecht, pp 333–363

    Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Assoc Pet Geol Bull 63:2164–2182

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of American Bulletin 94:222–235

    Google Scholar 

  • Ding X, Tian J, Chen J, Yao J, Deng X, Li Y (2015) Paleogeographic framework and provenance features during Late Triassic Chang 9 time of the Yanchang Formation, Ordos Basin, China. Arab J Geosci 8:6731–6743

    Google Scholar 

  • Dokuz A, Tanyolu E (2006) Geochemical constraints on the provenance, mineral sorting and subaerial weathering of Lower Jurassic and Upper Cretaceous clastic rocks of the eastern Pontides, Yusufeli (Artvin), NE Turkey. Turk J Earth Sci 15:181–209

    Google Scholar 

  • Drobe M, López de Luchi MG, Steenken A, Frei R, Naumann R, Siegesmund S, Wemmera K (2009) Provenance of the Late Proterozoic to Early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. J S Am Earth Sci 28:239–262

    Google Scholar 

  • Eftekhar-Nezhad J, Behroozi A (1991) Geodynamic significance of recent discoveries of ophiolites and late Palaeozoic rocks in NE Iran (including Kopet-Dagh). Abhandlungen der Geologischen Bundesanstalt 38:89–100

    Google Scholar 

  • El Asmi AM, Khaldi H, El Asmi K (2015) Elemental geochemical compositions of shallow marine deposits: a proxy for correlation. Arab J Geosci 8(11):10065–10092

    Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Armstrong-Altrin JS (2011) Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-Badam block, Central Iran. J Afr Earth Sci 61:142–159

    Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Adabi MH, Sadeghi A, Houshmandzadeh A (2015) Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. J Afr Earth Sci 111:54–75

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Google Scholar 

  • Fleming SP, Jordan TE (1990) Stratigraphic modeling of foreland basins: interpretating thrust deformation and lithosphere rheology. Geology 18:430–433

    Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian mode and geochemical evidence from turbiditic sandstones. J Geol Soc Lond 144:531–542

    Google Scholar 

  • Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publishing, Austin, Texas, p 184

    Google Scholar 

  • Fralick PW (2003) Geochemistry of clastic sedimentary rocks: ratio techniques. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral-deposit forming environments. Geological Association of Canada, GeoText 4:85–103

  • Fürsich FT, Wilmsen M, Seyed-Emami K, Majidifard MR (2009) Lithostratigraphy of the Upper Triassic–Middle Jurassic Shemshak Group of Northern Iran. In: Brune MF, Wilmsen M, Granath JW (eds) South Caspian to Central Iran Basins. Geological Society, London, Special Publications 312:129–160

  • Gabo JAS, Dimalanta CB, Asio MGS, Queaño KL, Yumul GP Jr, Imai A (2009) Geology and geochemistry of the clastic sequence from northwestern Panay (Philippines): implications for provenance and geotectonic setting. Tectonophysics 479:111–119

    Google Scholar 

  • Garcia D, Ravenne C, Maréchal B, Moutte J (2004) Geochemical variability induced by entrainment sorting: quantified signals for provenance analysis. Sedimentary Geology 171(1–4):113–128

  • Garzanti E, Vermeesch P, Padoan M, Resentini A, Vezzoli G, Andó S (2014) Provenance of passive-margin sand (Southern Africa). J Geol 122:17–42

    Google Scholar 

  • Gateneh W (2000) Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. J Afr Earth Sci 35:185–198

    Google Scholar 

  • Golonka J (2002) Plate-tectonic map of the Phanerozoic. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic Reef Patterns. Society of Economic Paleontologists and Mineralogists, Special Publication 72:21–75

  • Harker A (1909) The natural history of igneous rocks. Methuen, London, p 384

    Google Scholar 

  • Hossain HMZ, Roser BP, Kimura JI (2010) Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: provenance and source area weathering. Sediment Geol 228:171–183

    Google Scholar 

  • Ingersoll RV, Suczek CA (1979) Petrology and provenance of Neogene sand from Nicobar and Bengal fans. DSDP sites 211 and 218. J Sediment Petrol 49:1217–1228

    Google Scholar 

  • Jin Z, Li F, Cao J, Wang S, Yu J (2006) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, Mackay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy 21:169–200

  • Jordan TE (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. Am Assoc Pet Geol Bull 65:2506–2520

    Google Scholar 

  • Karimpour MH, Farmer L, Ashouri AR, Saadat S (2006) Major trace and REE geochemistry of the Paleo-Tethys collision-related granitoids from Mashhad, Iran. J Geosci 17:127–145

    Google Scholar 

  • Kermani S, Boutiba M, Boutaleb A, Fagel N (2016) Distribution of heavy and clay minerals in coastal sediment of Jijel, East of Algeria: indicators of sediment sources and transport and deposition environments. Arab J Geosci 9:36. https://doi.org/10.1007/s12517-015-2155-2

    Article  Google Scholar 

  • Khan T, Khan MS (2015) Clastic rock geochemistry of Punagarh basin, trans-Aravalli region, NW Indian shield: implications for paleoweathering, provenance, and tectonic setting. Arab J Geosci 8:3621–3644

    Google Scholar 

  • Lammerer B, Langheinrich G, Manutchehr-Danai M (1984) Geological investigations in the Binalud Mountains. Neues Jahrb Geol Palaontol Abh 168:269–277

    Google Scholar 

  • Lyberis N, Manby G (1999) Oblique to orthogonal convergence across the Turan Block in the Post-Miocene. Am Assoc Pet Geol Bull 83:1135–1160

    Google Scholar 

  • Ma K, Hu S, Wang T, Zhang B, Qin S, Shi S, Wang K, Qingyu H (2017) Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2017.02.038

  • Madhavaraju J, Lee YI (2010) Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian–Danian age of Cauvery basin, southeastern India: constraints from geochemistry. Curr Sci 98:528–537

    Google Scholar 

  • Martí J, Doronzo DM, Pedrazzi D, Colombo F (2019) Topographical controls on small-volume pyroclastic flows. Sedimentology 66:229–317. https://doi.org/10.1111/sed.12600

    Article  Google Scholar 

  • Maslov AV, Gareev EZ, Podkovyrov VN (2010) Upper Riphean and Vendian sandstones of the Bashkirian anticlinorium. Lithol Miner Resour 45:285–301

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy 21:169–200

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geological Society of America, Special Paper 284:21–40

  • Nabavi MH (1976) An introduction to the geology of Iran. Geological Survey of Iran, Tehran, p 109

    Google Scholar 

  • Nalpas T, Dabard MP, Ruffet G, Vernon A, Mpodozis C, Loi A, Heralli G (2008) Sedimentation and preservation of the Miocene Atecama Gravels in the Pedernales-Chararal area, northern Chile: climatic or tectonic control. Tectonophysics 459:161–173

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Google Scholar 

  • Nesbitt HW, Young GM (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43:341–358

    Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady state weathering and petrogenesis of siliciclastic sands and muds. J Geol 105:173–191

    Google Scholar 

  • Odigi MI, Amajor LC (2009) Geochemical characterization of Cretaceous sandstones from the Southern Benue Trough, Nigeria. Chin J Geochem 28:44–54

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone, 2nd edn. Springer-Verlag, New York, p 533

    Google Scholar 

  • Poursoltani MR, Gibling MR (2011) Composition, porosity and reservoir potential of the Middle Jurassic Kashafrud Formation, northeast Iran. Mar Pet Geol 28:1094–1110

    Google Scholar 

  • Poursoltani MR, Kargar M (2012) Analysis of Middle Jurassic coarse grained deposits in the East of Kopet-Dagh Basin, Iran. Sedimentary Facies 4:135–150

    Google Scholar 

  • Poursoltani MR, Moussavi Harami R, Gibling MR (2007) Jurassic deep-water fans in the Neo-Tethys Ocean: the Kashafrud Formation of the Kopet-Dagh Basin, Iran. Sediment Geol 198:53–74

    Google Scholar 

  • Poursoltani MR, Jamali M, Nasiri Y (2015) Lithofacies and depositional environment of Jurassic deposits in Binalud zone, in Baze-Hoz section, southern Mashhad. Applied Sedimentology 3(6):82–93

    Google Scholar 

  • Poursoltani MR, Gibling MR, Pe-Piper G (2019) Diagenesis, burial history, and hydrocarbon potential of Cambrian sandstone in the northern continental margin of Gondwana: a case study of the Lalun Formation of central Iran. J Asian Earth Sci 172:143–169

    Google Scholar 

  • Rahimi B, Ghaemi F (2015) Sedimentation related to thrust tectonics of Binalud Mountains. Sedimentary Facies 7:218–235

    Google Scholar 

  • Ramos-Vázquez MA, Armstrong-Altrin JS (2019) Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Mar Pet Geol 110:650–675

    Google Scholar 

  • Rashid SA, Ganai JA (2015) Preservation of glacial and interglacial phases in Tethys Himalaya: evidence from geochemistry and petrography of Permo-Carboniferous sandstones from the Spiti region, Himachal Pradesh, India. Arab J Geosci 8(11):9345–9363

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Google Scholar 

  • Sengör AMC (1990) A new model for the late Palaeozoic–Mesozoic tectonic evolution of Iran and its implications for Oman. In: Robertson AHF, Searle MP, Ries AC (eds) The geology and tectonics of the Oman region. Geological Society, London, Special Publications 49:797–831

  • Şengör AMC, Altiner D, Cin A, Ustaömer T, Hsü KJ (1988) Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. In: Audley-Charles MG, Hallam A (eds) Gondwana and Tethys. Geological Society, London Special Publication 37:119–181

  • Sheikholeslami MR, Kouhpeyma M (2012) Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran. J Geodyn 61:23–46

    Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Assoc Pet Geol Bull 52:1229–1258

    Google Scholar 

  • Sun L, Gui H, Chen S (2012) Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: implications for provenance, weathering and tectonic setting. Chemie der Erde Geochemistry 72:253–260

    Google Scholar 

  • Suttner LJ, Basu A, Mack GH (1981) Climate and the origin of quartzarenites. J Sediment Petrol 51:1235–1246

    Google Scholar 

  • Taheri J, Fürsich FT, Wilmsen M (2009) Stratigraphy, depositional environments and geodynamic significance of the Upper Bajocian–Bathonian Kashafrud Formation, NE Iran. In: Brunet MF, Wilmsen M, Granath JW (eds) South Caspian to Central Iran Basins. Geological Society, London, Special Publications 312:205–218

  • Tankard AJ (1986) On the depositional response to thrusting and lithosphere flexure: examples from the Appalachian and rocky mountain basins. In: Allen PA, Homewood P (eds) Foreland basins. International Association of Sedimentologists, Special Publication 8:369–392

  • Tawfik HA, Salah MK, Maejima W, Armstrong-Altrin JS, Abdle-Hameed AT, El Ghandour MM (2018) Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt. Geol J 53:1938–1953

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, p 312

    Google Scholar 

  • Umazano AM, Bellosi ES, Visconti G, Jalfin AG, Melchor RN (2009) Sedimentary record of a Late Cretaceous volcanic arc in central Patagonia: petrography, geochemistry and provenance of fluvial volcaniclastic deposits of the Bajo Barreal Formation, San Jorge Basin, Argentina. Cretac Res 30:749–766

    Google Scholar 

  • Vaez-Javadi F, Allameh M (2015) Biostratigraphy of Bazehowz Formation at its type section, south west Mashhad based on plant macrofossils. Geopersia 5(1):27–44

    Google Scholar 

  • Varga A, Raucsik B, Szakmány G (2017) Origin of natural arsenic antimony contents in the Permian to lower triassic siliciclastic rocks of the western Mecsek Mountains, SW Hungary. Carpathian Journal of Earth and Environmental Sciences 12:5–12

    Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:117–180

    Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2016) Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sediment Geol 332:1–12

    Google Scholar 

  • Von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Modeling compositional change: the example of chemical weathering of granitoid rocks. Math Geol 35:231–251

    Google Scholar 

  • Wanas HA, Abdel-Maguid NM (2006) Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone, southwest Saudi Arabia: implications for provenance and tectonic setting. J Asian Earth Sci 27:416–429

    Google Scholar 

  • Wani H, Mondal MEA (2010) Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian Peninsula: implications on paleoweathering and Proterozoic crustal evolution. J Asian Earth Sci 38:220–232

    Google Scholar 

  • Wilmsen M, Fürsich FT, Taheri J (2009a) The Shemshak Group (Lower–Middle Jurassic) of the Binalud Mountains, NE Iran: stratigraphy, facies and geodynamic implications. In: Brunet MF, Wilmsen M, Granath JW (eds) South Caspian to Central Iran Basins. Geological Society, London, Special Publications 312:175–188

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Taheri J (2009b) The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova 21:211–218

    Google Scholar 

  • Yan Z, Wang Z, Yan Q, Wang T, Guo X (2012) Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling mountains, central China: implications for the tectonic evolution of the Qinling Orogenic Belt. J Sediment Res 82:9–24

    Google Scholar 

  • Yerino LN, Maynard JB (1984) Petrography of modern marine sands from the Peru–Chile Trench and adjacent areas. Sedimentology 31:83–89

    Google Scholar 

  • Zaid SM (2012) Provenance, diagenesis, tectonic setting and geochemistry Rudes Sandstone (Lower Miocene) Wada Field, Gulf Suez, Egypt. J Afr Earth Sci 66(67):56–71

    Google Scholar 

  • Zaid SM (2015) Geochemistry of sands along the Ain Soukhna and Ras Gharib beaches, Gulf of Suez, Egypt: implications for provenance and tectonic setting. Arab J Geosci 8:10481–10496

    Google Scholar 

  • Zanchetta S, Berra F, Zanchi A, Bergomi M, Caridroit M, Nicora A, Heidarzadeh G (2013) The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Res 24:1237–1266

    Google Scholar 

  • Zanchi A, Berra F, Mattei M, Ghassemi MR, Sabouri J (2006) Inversion tectonics in central Alborz, Iran. J Struct Geol 28:2023–2037

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Uwe Jenchen and an anonymous reviewer as well as to the journal editor Dr. Domenico M. Doronzo for their thoughtful and constructive comments. Additionally, we thank Saeed Rayhani for the technical assistance with the analyses.

Funding

The authors received financial assistance from the Islamic Azad University, Mashhad Branch (number 2431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Reza Poursoltani.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poursoltani, M.R., Fürsich, F.T. Provenance of Jurassic siliciclastic deposits, determined by geochemistry and petrology: a case study from a Cimmerian intramontane basin, the Binalud Mountains, Iran. Arab J Geosci 13, 650 (2020). https://doi.org/10.1007/s12517-020-05512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05512-6

Keywords

Navigation