Skip to main content

Advertisement

Log in

Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Yuan Q, Xie L (2018) The AlkB family of Fe (II)/alpha-ketoglutarate-dependent dioxygenases modulates embryogenesis through epigenetic regulation. Curr Stem Cell Res Ther 13(2):136–143. https://doi.org/10.2174/1574888X12666171027105532

    Article  CAS  PubMed  Google Scholar 

  2. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6(12):863–865. https://doi.org/10.1038/nchembio.482

    Article  CAS  PubMed  Google Scholar 

  4. Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA–repair mechanisms and medical significance. DNA Repair 3(11):1389–1407. https://doi.org/10.1016/j.dnarep.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  5. Chen BJ, Carroll P, Samson L (1994) The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. J Bacteriol 176(20):6255–6261. https://doi.org/10.1128/jb.176.20.6255-6261.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang B, Usharani D, Li C, Shaik S (2014) Theory uncovers an unusual mechanism of DNA repair of a lesioned adenine by AlkB enzymes. J Am Chem Soc 136(39):13895–13901. https://doi.org/10.1021/ja507934g

    Article  CAS  PubMed  Google Scholar 

  7. Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T (2007) Repair of alkylated DNA: recent advances. DNA Repair 6(4):429–442. https://doi.org/10.1016/j.dnarep.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Yi C, He C (2013) DNA repair by reversal of DNA damage. Cold Spring Harbor Perspect Biol 5(1):a012575. https://doi.org/10.1101/cshperspect.a012575

    Article  CAS  Google Scholar 

  9. Kataoka H, Sekiguchi M (1985) Molecular cloning and characterization of the alkB gene of Escherichia coli. Mol Gen Genet 198(2):263–269. https://doi.org/10.1007/bf00383004

    Article  CAS  PubMed  Google Scholar 

  10. Kataoka H, Yamamoto Y, Sekiguchi M (1983) A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J Bacteriol 153(3):1301–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sedgwick B, Robins P, Lindahl T (2006) Direct removal of alkylation damage from DNA by AlkB and related DNA dioxygenases. Methods Enzymol 408:108–120. https://doi.org/10.1016/S0076-6879(06)08008-6

    Article  CAS  PubMed  Google Scholar 

  12. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM (2015) The AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem 290(34):20734–20742. https://doi.org/10.1074/jbc.R115.656462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419(6903):174–178. https://doi.org/10.1038/nature00908

    Article  CAS  PubMed  Google Scholar 

  14. Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419(6903):178–182. https://doi.org/10.1038/nature01048

    Article  CAS  PubMed  Google Scholar 

  15. Falnes PO, Bjoras M, Aas PA, Sundheim O, Seeberg E (2004) Substrate specificities of bacterial and human AlkB proteins. Nucleic Acids Res 32(11):3456–3461. https://doi.org/10.1093/nar/gkh655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, Sundheim O, Bjoras M, Slupphaug G, Seeberg E, Krokan HE (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421(6925):859–863. https://doi.org/10.1038/nature01363

    Article  CAS  PubMed  Google Scholar 

  17. Ougland R, Rognes T, Klungland A, Larsen E (2015) Non-homologous functions of the AlkB homologs. J Mol Cell Biol 7(6):494–504. https://doi.org/10.1093/jmcb/mjv029

    Article  CAS  PubMed  Google Scholar 

  18. Yi C, Yang CG, He C (2009) A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc Chem Res 42(4):519–529. https://doi.org/10.1021/ar800178j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torabifard H, Cisneros GA (2017) Computational investigation of O2 diffusion through an intra-molecular tunnel in AlkB; influence of polarization on O2 transport. Chem Sci 8(9):6230–6238. https://doi.org/10.1039/c7sc00997f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delaney JC, Essigmann JM (2004) Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine, and 3-methylthymine in alkB Escherichia coli. Proc Natl Acad Sci USA 101(39):14051–14056. https://doi.org/10.1073/pnas.0403489101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma CJ, Ding JH, Ye TT, Yuan BF, Feng YQ (2019) AlkB homologue 1 demethylates N(3)-methylcytidine in mRNA of mammals. ACS Chem Biol. https://doi.org/10.1021/acschembio.8b01001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Westbye MP, Feyzi E, Aas PA, Vagbo CB, Talstad VA, Kavli B, Hagen L, Sundheim O, Akbari M, Liabakk NB, Slupphaug G, Otterlei M, Krokan HE (2008) Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J Biol Chem 283(36):25046–25056. https://doi.org/10.1074/jbc.M803776200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bian K, Lenz SAP, Tang Q, Chen F, Qi R, Jost M, Drennan CL, Essigmann JM, Wetmore SD, Li D (2019) DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Nucl Acids Res 47(11):5522–5529. https://doi.org/10.1093/nar/gkz395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. You C, Wang P, Nay SL, Wang J, Dai X, O'Connor TR, Wang Y (2016) Roles of Aag, Alkbh2, and Alkbh3 in the repair of carboxymethylated and ethylated thymidine lesions. ACS Chem Biol 11(5):1332–1338. https://doi.org/10.1021/acschembio.6b00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li MM, Nilsen A, Shi Y, Fusser M, Ding YH, Fu Y, Liu B, Niu Y, Wu YS, Huang CM, Olofsson M, Jin KX, Lv Y, Xu XZ, He C, Dong MQ, Rendtlew Danielsen JM, Klungland A, Yang YG (2013) ALKBH4-dependent demethylation of actin regulates actomyosin dynamics. Nat Commun 4:1832. https://doi.org/10.1038/ncomms2863

    Article  CAS  PubMed  Google Scholar 

  26. van den Born E, Vagbo CB, Songe-Moller L, Leihne V, Lien GF, Leszczynska G, Malkiewicz A, Krokan HE, Kirpekar F, Klungland A, Falnes PO (2011) ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat Commun 2:172. https://doi.org/10.1038/ncomms1173

    Article  CAS  PubMed  Google Scholar 

  27. Wang G, He Q, Feng C, Liu Y, Deng Z, Qi X, Wu W, Mei P, Chen Z (2014) The atomic resolution structure of human AlkB homolog 7 (ALKBH7), a key protein for programmed necrosis and fat metabolism. J Biol Chem 289(40):27924–27936. https://doi.org/10.1074/jbc.M114.590505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15(5):293–306. https://doi.org/10.1038/nrg3724

    Article  CAS  PubMed  Google Scholar 

  29. Roundtree IA, He C (2016) RNA epigenetics–chemical messages for posttranscriptional gene regulation. Curr Opin Chem Biol 30:46–51. https://doi.org/10.1016/j.cbpa.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  30. Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang YG, He C (2013) Sprouts of RNA epigenetics: the discovery of mammalian RNA demethylases. RNA Biol 10(6):915–918. https://doi.org/10.4161/rna.24711

    Article  PubMed  PubMed Central  Google Scholar 

  31. Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG (2013) N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genom Proteom Bioinform 11(1):8–17. https://doi.org/10.1016/j.gpb.2012.12.002

    Article  CAS  Google Scholar 

  32. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of rna methylation writers, readers, and erasers. Mol Cell 74(4):640–650. https://doi.org/10.1016/j.molcel.2019.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu B, Li L, Huang Y, Ma J, Min J (2017) Readers, writers and erasers of N(6)-methylated adenosine modification. Curr Opin Struct Biol 47:67–76. https://doi.org/10.1016/j.sbi.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  34. Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, Han KL, Cui Q, He C (2013) FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 4:1798. https://doi.org/10.1038/ncomms2822

    Article  CAS  PubMed  Google Scholar 

  35. Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29(13):1343–1355. https://doi.org/10.1101/gad.262766.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adhikari S, Xiao W, Zhao YL, Yang YG (2016) m(6)A: signaling for mRNA splicing. RNA Biol 13(9):756–759. https://doi.org/10.1080/15476286.2016.1201628

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  38. Zhao BS, He C (2015) Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol 16:43. https://doi.org/10.1186/s13059-015-0609-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W, Wu Y, Lv Y, Hao J, Wang L, Li A, Yang Y, Jin KX, Zhao X, Li Y, Ping XL, Lai WY, Wu LG, Jiang G, Wang HL, Sang L, Wang XJ, Yang YG, Zhou Q (2015) m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16(3):289–301. https://doi.org/10.1016/j.stem.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  40. Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361(6409):1346–1349. https://doi.org/10.1126/science.aau1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jordan JJ, Chhim S, Margulies CM, Allocca M, Bronson RT, Klungland A, Samson LD, Fu D (2017) ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage. Cell Death Dis 8(7):e2947. https://doi.org/10.1038/cddis.2017.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu SS, Xu W, Liu S, Chen B, Wang XL, Wang Y, Liu SF, Wu JQ (2011) Down-regulation of ALKBH2 increases cisplatin sensitivity in H1299 lung cancer cells. Acta Pharmacol Sin 32(3):393–398. https://doi.org/10.1038/aps.2010.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stefansson OA, Hermanowicz S, van der Horst J, Hilmarsdottir H, Staszczak Z, Jonasson JG, Tryggvadottir L, Gudjonsson T, Sigurdsson S (2017) CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer. BMC Cancer 17(1):469. https://doi.org/10.1186/s12885-017-3453-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohshio I, Kawakami R, Tsukada Y, Nakajima K, Kitae K, Shimanoe T, Saigo Y, Hase H, Ueda Y, Jingushi K, Tsujikawa K (2016) ALKBH8 promotes bladder cancer growth and progression through regulating the expression of survivin. Biochem Biophys Res Commun 477(3):413–418. https://doi.org/10.1016/j.bbrc.2016.06.084

    Article  CAS  PubMed  Google Scholar 

  45. Shimada K, Nakamura M, Anai S, De Velasco M, Tanaka M, Tsujikawa K, Ouji Y, Konishi N (2009) A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Can Res 69(7):3157–3164. https://doi.org/10.1158/0008-5472.CAN-08-3530

    Article  CAS  Google Scholar 

  46. Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, Aplin AE, Lu Z, Hwang S, He C, He YY (2019) m(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun 10(1):2782. https://doi.org/10.1038/s41467-019-10669-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujii T, Shimada K, Anai S, Fujimoto K, Konishi N (2013) ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression. Cancer Sci 104(3):321–327. https://doi.org/10.1111/cas.12089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walker AR, Silvestrov P, Muller TA, Podolsky RH, Dyson G, Hausinger RP, Cisneros GA (2017) ALKBH7 variant related to prostate cancer exhibits altered substrate binding. PLoS Comput Biol 13(2):e1005345. https://doi.org/10.1371/journal.pcbi.1005345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neta G, Brenner AV, Sturgis EM, Pfeiffer RM, Hutchinson AA, Aschebrook-Kilfoy B, Yeager M, Xu L, Wheeler W, Abend M, Ron E, Tucker MA, Chanock SJ, Sigurdson AJ (2011) Common genetic variants related to genomic integrity and risk of papillary thyroid cancer. Carcinogenesis 32(8):1231–1237. https://doi.org/10.1093/carcin/bgr100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tasaki M, Shimada K, Kimura H, Tsujikawa K, Konishi N (2011) ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br J Cancer 104(4):700–706. https://doi.org/10.1038/sj.bjc.6606012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Q, Wang G, Wang Y, Liu C, He X (2018) Association of AlkB homolog 3 expression with tumor recurrence and unfavorable prognosis in hepatocellular carcinoma. J Gastroenterol Hepatol. https://doi.org/10.1111/jgh.14117

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I, Anai S, Harada H, Tsujikawa K, Konishi N, Shinohara N, Nakajima Y (2015) Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma. Oncol Rep 34(2):648–654. https://doi.org/10.3892/or.2015.4017

    Article  CAS  PubMed  Google Scholar 

  53. Shimada K, Fujii T, Tsujikawa K, Anai S, Fujimoto K, Konishi N (2012) ALKBH3 contributes to survival and angiogenesis of human urothelial carcinoma cells through NADPH oxidase and tweak/Fn14/VEGF signals. Clin Cancer Res 18(19):5247–5255. https://doi.org/10.1158/1078-0432.CCR-12-0955

    Article  CAS  PubMed  Google Scholar 

  54. Yamato I, Sho M, Shimada K, Hotta K, Ueda Y, Yasuda S, Shigi N, Konishi N, Tsujikawa K, Nakajima Y (2012) PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Can Res 72(18):4829–4839. https://doi.org/10.1158/0008-5472.CAN-12-0328

    Article  CAS  Google Scholar 

  55. Woo HH (1862) Chambers SK (2019) Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim Biophys Acta 1:35–46. https://doi.org/10.1016/j.bbagrm.2018.10.008

    Article  CAS  Google Scholar 

  56. Cetica V, Genitori L, Giunti L, Sanzo M, Bernini G, Massimino M, Sardi I (2009) Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage. J Neurooncol 94(2):195–201. https://doi.org/10.1007/s11060-009-9837-0

    Article  CAS  PubMed  Google Scholar 

  57. Johannessen TC, Prestegarden L, Grudic A, Hegi ME, Tysnes BB, Bjerkvig R (2013) The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells. Neuro-oncology 15(3):269–278. https://doi.org/10.1093/neuonc/nos301

    Article  CAS  PubMed  Google Scholar 

  58. Beharry AA, Lacoste S, O'Connor TR, Kool ET (2016) Fluorescence monitoring of the oxidative repair of DNA alkylation damage by ALKBH3, a prostate cancer marker. J Am Chem Soc 138(11):3647–3650. https://doi.org/10.1021/jacs.6b00986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Calvo JA, Meira LB, Lee CY, Moroski-Erkul CA, Abolhassani N, Taghizadeh K, Eichinger LW, Muthupalani S, Nordstrand LM, Klungland A, Samson LD (2012) DNA repair is indispensable for survival after acute inflammation. J Clin Investig 122(7):2680–2689. https://doi.org/10.1172/JCI63338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew Danielsen JM, Wang XJ, Yang YG (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24(12):1403–1419. https://doi.org/10.1038/cr.2014.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345. https://doi.org/10.1126/science.1142382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, Delplanque J, Vaillant E, Pattou F, Ruiz J, Weill J, Levy-Marchal C, Horber F, Potoczna N, Hercberg S, Le Stunff C, Bougneres P, Kovacs P, Marre M, Balkau B, Cauchi S, Chevre JC, Froguel P (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39(6):724–726. https://doi.org/10.1038/ng2048

    Article  CAS  PubMed  Google Scholar 

  63. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894. https://doi.org/10.1126/science.1141634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3(7):e115. https://doi.org/10.1371/journal.pgen.0030115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen F, Huang W, Huang JT, Xiong J, Yang Y, Wu K, Jia GF, Chen J, Feng YQ, Yuan BF, Liu SM (2015) Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J Clin Endocrinol Metab 100(1):E148–154. https://doi.org/10.1210/jc.2014-1893

    Article  CAS  PubMed  Google Scholar 

  66. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nobrega MA (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507(7492):371–375. https://doi.org/10.1038/nature13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Monies D, Vagbo CB, Al-Owain M, Alhomaidi S, Alkuraya FS (2019) Recessive truncating mutations in ALKBH8 cause intellectual disability and severe impairment of wobble uridine modification. Am J Hum Genet 104(6):1202–1209. https://doi.org/10.1016/j.ajhg.2019.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Endres L, Begley U, Clark R, Gu C, Dziergowska A, Malkiewicz A, Melendez JA, Dedon PC, Begley TJ (2015) Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS ONE 10(7):e0131335. https://doi.org/10.1371/journal.pone.0131335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S (2019) FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139(4):518–532. https://doi.org/10.1161/CIRCULATIONAHA.118.033794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carell T, Brandmayr C, Hienzsch A, Muller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M (2012) Structure and function of noncanonical nucleobases. Angew Chem 51(29):7110–7131. https://doi.org/10.1002/anie.201201193

    Article  CAS  Google Scholar 

  71. Solberg A, Robertson AB, Aronsen JM, Rognmo O, Sjaastad I, Wisloff U, Klungland A (2013) Deletion of mouse Alkbh7 leads to obesity. J Mol Cell Biol 5(3):194–203. https://doi.org/10.1093/jmcb/mjt012

    Article  CAS  PubMed  Google Scholar 

  72. Liu D, Li G, Zuo Y (2019) Function determinants of TET proteins: the arrangements of sequence motifs with specific codes. Brief Bioinform 20(5):1826–1835. https://doi.org/10.1093/bib/bby053

    Article  CAS  PubMed  Google Scholar 

  73. Wei YF, Carter KC, Wang RP, Shell BK (1996) Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res 24(5):931–937. https://doi.org/10.1093/nar/24.5.931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dinglay S, Trewick SC, Lindahl T, Sedgwick B (2000) Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes Dev 14(16):2097–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kurowski MA, Bhagwat AS, Papaj G, Bujnicki JM (2003) Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genom 4(1):48. https://doi.org/10.1186/1471-2164-4-48

    Article  Google Scholar 

  76. Sundheim O, Vagbo CB, Bjoras M, Sousa MM, Talstad V, Aas PA, Drablos F, Krokan HE, Tainer JA, Slupphaug G (2006) Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J 25(14):3389–3397. https://doi.org/10.1038/sj.emboj.7601219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang CG, Yi C, Duguid EM, Sullivan CT, Jian X, Rice PA, He C (2008) Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452(7190):961–965. https://doi.org/10.1038/nature06889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z (2014) Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem 289(17):11571–11583. https://doi.org/10.1074/jbc.M113.546168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Purslow JA, Nguyen TT, Egner TK, Dotas RR, Khatiwada B, Venditti V (2018) Active site breathing of human Alkbh5 revealed by solution NMR and accelerated molecular dynamics. Biophys J 115(10):1895–1905. https://doi.org/10.1016/j.bpj.2018.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen W, Zhang L, Zheng G, Fu Y, Ji Q, Liu F, Chen H, He C (2014) Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Lett 588(6):892–898. https://doi.org/10.1016/j.febslet.2014.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang X, Wei LH, Wang Y, Xiao Y, Liu J, Zhang W, Yan N, Amu G, Tang X, Zhang L, Jia G (2019) Structural insights into FTO's catalytic mechanism for the demethylation of multiple RNA substrates. Proc Natl Acad Sci USA 116(8):2919–2924. https://doi.org/10.1073/pnas.1820574116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zou S, Toh JD, Wong KH, Gao YG, Hong W, Woon EC (2016) N(6)-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci Rep 6:25677. https://doi.org/10.1038/srep25677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, Galvanovskis J, Rorsman P, Robins P, Prieur X, Coll AP, Ma M, Jovanovic Z, Farooqi IS, Sedgwick B, Barroso I, Lindahl T, Ponting CP, Ashcroft FM, O'Rahilly S, Schofield CJ (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472. https://doi.org/10.1126/science.1151710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur JJ, Rentmeister A, Gross SS, Pellizzoni L, Debart F, Goodarzi H, Jaffrey SR (2019) FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol 15(4):340–347. https://doi.org/10.1038/s41589-019-0231-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bjornstad LG, Meza TJ, Otterlei M, Olafsrud SM, Meza-Zepeda LA, Falnes PO (2012) Human ALKBH4 interacts with proteins associated with transcription. PLoS ONE 7(11):e49045. https://doi.org/10.1371/journal.pone.0049045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang G, Hon LS, Fang G, Swenberg JA, Xiao AZ (2016) DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 532(7599):329–333. https://doi.org/10.1038/nature17640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C (2016) ALKBH1-mediated tRNA demethylation regulates translation. Cell 167(3):816–828. https://doi.org/10.1016/j.cell.2016.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hubner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Hobartner C, Bohnsack MT (2016) NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J 35(19):2104–2119. https://doi.org/10.15252/embj.201694885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muller TA, Struble SL, Meek K, Hausinger RP (2018) Characterization of human AlkB homolog 1 produced in mammalian cells and demonstration of mitochondrial dysfunction in ALKBH1-deficient cells. Biochem Biophys Res Commun 495(1):98–103. https://doi.org/10.1016/j.bbrc.2017.10.158

    Article  CAS  PubMed  Google Scholar 

  90. Muller TA, Andrzejak MM, Hausinger RP (2013) A covalent protein-DNA 5'-product adduct is generated following AP lyase activity of human ALKBH1 (AlkB homologue 1). Biochem J 452(3):509–518. https://doi.org/10.1042/BJ20121908

    Article  CAS  PubMed  Google Scholar 

  91. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B (2002) Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA 99(26):16660–16665. https://doi.org/10.1073/pnas.262589799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O'Connor TR (2005) Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 280(47):39448–39459. https://doi.org/10.1074/jbc.M509881200

    Article  CAS  PubMed  Google Scholar 

  93. Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, Remme J, Falnes PO (2004) AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 16(1):107–116. https://doi.org/10.1016/j.molcel.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  94. Ringvoll J, Nordstrand LM, Vagbo CB, Talstad V, Reite K, Aas PA, Lauritzen KH, Liabakk NB, Bjork A, Doughty RW, Falnes PO, Krokan HE, Klungland A (2006) Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA. EMBO J 25(10):2189–2198. https://doi.org/10.1038/sj.emboj.7601109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen B, Liu H, Sun X, Yang CG (2010) Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3. Mol BioSyst 6(11):2143–2149. https://doi.org/10.1039/c005148a

    Article  CAS  PubMed  Google Scholar 

  96. Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K (2017) AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 7:42271. https://doi.org/10.1038/srep42271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aa E, He C, Klungland A (2016) ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair 44:87–91. https://doi.org/10.1016/j.dnarep.2016.05.026

    Article  CAS  Google Scholar 

  98. Pastore C, Topalidou I, Forouhar F, Yan AC, Levy M, Hunt JF (2012) Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. J Biol Chem 287(3):2130–2143. https://doi.org/10.1074/jbc.M111.286187

    Article  CAS  PubMed  Google Scholar 

  99. Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, Dedon PC, Begley TJ, Samson LD (2010) Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol 30(10):2449–2459. https://doi.org/10.1128/MCB.01604-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fu Y, Dai Q, Zhang W, Ren J, Pan T, He C (2010) The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA. Angew Chem 49(47):8885–8888. https://doi.org/10.1002/anie.201001242

    Article  CAS  Google Scholar 

  101. Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q, Cheng W, Wang J, Feng Y, Chai J (2010) Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464(7292):1205–1209. https://doi.org/10.1038/nature08921

    Article  CAS  PubMed  Google Scholar 

  102. Bleijlevens B, Shivarattan T, Flashman E, Yang Y, Simpson PJ, Koivisto P, Sedgwick B, Schofield CJ, Matthews SJ (2008) Dynamic states of the DNA repair enzyme AlkB regulate product release. EMBO Rep 9(9):872–877. https://doi.org/10.1038/embor.2008.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bjornstad LG, Zoppellaro G, Tomter AB, Falnes PO, Andersson KK (2011) Spectroscopic and magnetic studies of wild-type and mutant forms of the Fe(II)- and 2-oxoglutarate-dependent decarboxylase ALKBH4. Biochem J 434(3):391–398. https://doi.org/10.1042/BJ20101667

    Article  CAS  PubMed  Google Scholar 

  104. Herr CQ, Hausinger RP (2018) Amazing diversity in biochemical roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci 43(7):517–532. https://doi.org/10.1016/j.tibs.2018.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aravind L, Koonin EV (2001) The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. https://doi.org/10.1186/gb-2001-2-3-research0007

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bleijlevens B, Shivarattan T, van den Boom KS, de Haan A, van der Zwan G, Simpson PJ, Matthews SJ (2012) Changes in protein dynamics of the DNA repair dioxygenase AlkB upon binding of Fe(2+) and 2-oxoglutarate. Biochemistry 51(16):3334–3341. https://doi.org/10.1021/bi201699e

    Article  CAS  PubMed  Google Scholar 

  107. Yu B, Edstrom WC, Benach J, Hamuro Y, Weber PC, Gibney BR, Hunt JF (2006) Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 439(7078):879–884. https://doi.org/10.1038/nature04561

    Article  CAS  PubMed  Google Scholar 

  108. Yu B, Hunt JF (2009) Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB. Proc Natl Acad Sci USA 106(34):14315–14320. https://doi.org/10.1073/pnas.0812938106

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sundheim O, Talstad VA, Vagbo CB, Slupphaug G, Krokan HE (2008) AlkB demethylases flip out in different ways. DNA Repair 7(11):1916–1923. https://doi.org/10.1016/j.dnarep.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  110. Lu L, Yi C, Jian X, Zheng G, He C (2010) Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked protein-DNA system. Nucleic Acids Res 38(13):4415–4425. https://doi.org/10.1093/nar/gkq129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA (2014) Structure of human RNA N(6)-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 42(7):4741–4754. https://doi.org/10.1093/nar/gku085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Monsen VT, Sundheim O, Aas PA, Westbye MP, Sousa MM, Slupphaug G, Krokan HE (2010) Divergent ss-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3. Nucleic Acids Res 38(19):6447–6455. https://doi.org/10.1093/nar/gkq518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ergel B, Gill ML, Brown L, Yu B, Palmer AG 3rd, Hunt JF (2014) Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB. J Biol Chem 289(43):29584–29601. https://doi.org/10.1074/jbc.M114.575647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kanazhevskaya LY, Alekseeva IV, Fedorova OS (2019) A single-turnover kinetic study of dna demethylation catalyzed by Fe(II)/alpha-ketoglutarate-dependent dioxygenase AlkB. Molecules. https://doi.org/10.3390/molecules24244576

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nigam R, Anindya R (2018) Escherichia coli single-stranded DNA binding protein SSB promotes AlkB-mediated DNA dealkylation repair. Biochem Biophys Res Commun 496(2):274–279. https://doi.org/10.1016/j.bbrc.2018.01.043

    Article  CAS  PubMed  Google Scholar 

  116. Mohan M, Pandya V, Anindya R (2018) Escherichia coli AlkB and single-stranded DNA binding protein SSB interaction explored by molecular dynamics simulation. J Mol Graph Model 84:29–35. https://doi.org/10.1016/j.jmgm.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  117. Nigam R, Mohan M, Shivange G, Dewangan PK, Anindya R (2018) Escherichia coli AlkB interacts with single-stranded DNA binding protein SSB by an intrinsically disordered region of SSB. Mol Biol Rep 45(5):865–870. https://doi.org/10.1007/s11033-018-4232-6

    Article  CAS  PubMed  Google Scholar 

  118. Zhang M, Yang S, Nelakanti R, Zhao W, Liu G, Li Z, Liu X, Wu T, Xiao A, Li H (2020) Mammalian ALKBH1 serves as an N(6)-mA demethylase of unpairing DNA. Cell Res. https://doi.org/10.1038/s41422-019-0237-5

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tian LF, Liu YP, Chen L, Tang Q, Wu W, Sun W, Chen Z, Yan XX (2020) Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1. Cell Res. https://doi.org/10.1038/s41422-019-0233-9

    Article  PubMed  PubMed Central  Google Scholar 

  120. Choi SY, Jang JH, Kim KR (2011) Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization. Clin Exp Med 11(4):219–226. https://doi.org/10.1007/s10238-010-0130-5

    Article  CAS  PubMed  Google Scholar 

  121. Gao W, Li L, Xu P, Fang J, Xiao S, Chen S (2011) Frequent down-regulation of hABH2 in gastric cancer and its involvement in growth of cancer cells. J Gastroenterol Hepatol 26(3):577–584. https://doi.org/10.1111/j.1440-1746.2010.06531.x

    Article  CAS  PubMed  Google Scholar 

  122. Wilson DL, Beharry AA, Srivastava A, O'Connor TR, Kool ET (2018) Fluorescence probes for ALKBH2 allow the measurement of DNA alkylation repair and drug resistance responses. Angew Chem 57(39):12896–12900. https://doi.org/10.1002/anie.201807593

    Article  CAS  Google Scholar 

  123. Yi C, Chen B, Qi B, Zhang W, Jia G, Zhang L, Li CJ, Dinner AR, Yang CG, He C (2012) Duplex interrogation by a direct DNA repair protein in search of base damage. Nat Struct Mol Biol 19(7):671–676. https://doi.org/10.1038/nsmb.2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu C, Yi C (2014) Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Angew Chem 53(14):3659–3662. https://doi.org/10.1002/anie.201310050

    Article  CAS  Google Scholar 

  125. Liefke R, Windhof-Jaidhauser IM, Gaedcke J, Salinas-Riester G, Wu F, Ghadimi M, Dango S (2015) The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome medicine 7(1):66. https://doi.org/10.1186/s13073-015-0180-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dango S, Mosammaparast N, Sowa ME, Xiong LJ, Wu F, Park K, Rubin M, Gygi S, Harper JW, Shi Y (2011) DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell 44(3):373–384. https://doi.org/10.1016/j.molcel.2011.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q, Wang H (2019) Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucl Acids Res 47(5):2533–2545. https://doi.org/10.1093/nar/gky1250

    Article  CAS  PubMed  Google Scholar 

  128. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bogler O, Majumder S, He C, Huang S (2017) m(6)A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31(4):591–606. https://doi.org/10.1016/j.ccell.2017.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H, Klungland A, Yan W (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA 115(2):E325–E333. https://doi.org/10.1073/pnas.1717794115

    Article  CAS  PubMed  Google Scholar 

  130. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113(14):E2047–2056. https://doi.org/10.1073/pnas.1602883113

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhu H, Gan X, Jiang X, Diao S, Wu H, Hu J (2019) ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res 38(1):163. https://doi.org/10.1186/s13046-019-1159-2

    Article  PubMed  PubMed Central  Google Scholar 

  132. Deng X, Su R, Weng H, Huang H, Li Z, Chen J (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res 28(5):507–517. https://doi.org/10.1038/s41422-018-0034-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao W, Qi X, Liu L, Liu Z, Ma S, Wu J (2019) Epigenetic regulation of m(6)A modifications in human cancer. Mol Ther Nucl Acids 19:405–412. https://doi.org/10.1016/j.omtn.2019.11.022

    Article  CAS  Google Scholar 

  134. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  135. Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG (2014) FTO and obesity: mechanisms of association. Curr Diab Rep 14(5):486. https://doi.org/10.1007/s11892-014-0486-0

    Article  CAS  PubMed  Google Scholar 

  136. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong GM, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J (2017) FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell 31(1):127–141. https://doi.org/10.1016/j.ccell.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  137. Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, Wu X, Wan G (2019) RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer 18(1):46. https://doi.org/10.1186/s12943-019-1004-4

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kaklamani V, Yi N, Sadim M, Siziopikou K, Zhang K, Xu Y, Tofilon S, Agarwal S, Pasche B, Mantzoros C (2011) The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet 12:52. https://doi.org/10.1186/1471-2350-12-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li Y, Zheng D, Wang F, Xu Y, Yu H, Zhang H (2019) Expression of demethylase Genes, FTO and ALKBH1, is associated with prognosis of gastric cancer. Dig Dis Sci 64(6):1503–1513. https://doi.org/10.1007/s10620-018-5452-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu J, Ren D, Du Z, Wang H, Zhang H, Jin Y (2018) m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun 502(4):456–464. https://doi.org/10.1016/j.bbrc.2018.05.175

    Article  CAS  PubMed  Google Scholar 

  141. Peng S, Xiao W, Ju D, Sun B, Hou N, Liu Q, Wang Y, Zhao H, Gao C, Zhang S, Cao R, Li P, Huang H, Ma Y, Wang Y, Lai W, Ma Z, Zhang W, Huang S, Wang H, Zhang Z, Zhao L, Cai T, Zhao YL, Wang F, Nie Y, Zhi G, Yang YG, Zhang EE, Huang N (2019) Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aau7116

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kawarada L, Suzuki T, Ohira T, Hirata S, Miyauchi K, Suzuki T (2017) ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucl Acids Res 45(12):7401–7415. https://doi.org/10.1093/nar/gkx354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wagner A, Hofmeister O, Rolland SG, Maiser A, Aasumets K, Schmitt S, Schorpp K, Feuchtinger A, Hadian K, Schneider S, Zischka H, Leonhardt H, Conradt B, Gerhold JM, Wolf A (2019) Mitochondrial Alkbh1 localizes to mtRNA granules and its knockdown induces the mitochondrial UPR in humans and C elegans. J Cell Sci. https://doi.org/10.1242/jcs.223891

    Article  PubMed  PubMed Central  Google Scholar 

  144. Pan Z, Sikandar S, Witherspoon M, Dizon D, Nguyen T, Benirschke K, Wiley C, Vrana P, Lipkin SM (2008) Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dyn 237(2):316–327. https://doi.org/10.1002/dvdy.21418

    Article  PubMed  Google Scholar 

  145. Nordstrand LM, Svard J, Larsen E, Nilsen A, Ougland R, Furu K, Lien GF, Rognes T, Namekawa SH, Lee JT, Klungland A (2010) Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects. PLoS ONE 5(11):e13827. https://doi.org/10.1371/journal.pone.0013827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ougland R, Jonson I, Moen MN, Nesse G, Asker G, Klungland A, Larsen E (2016) Role of ALKBH1 in the core transcriptional network of embryonic stem cells. Cell Physiol Biochem 38(1):173–184. https://doi.org/10.1159/000438619

    Article  CAS  PubMed  Google Scholar 

  147. Zhou C, Liu Y, Li X, Zou J, Zou S (2016) DNA N(6)-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs. Bone Res 4:16033. https://doi.org/10.1038/boneres.2016.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nordstrand LM, Furu K, Paulsen J, Rognes T, Klungland A (2012) Alkbh1 and Tzfp repress a non-repeat piRNA cluster in pachytene spermatocytes. Nucleic Acids Res 40(21):10950–10963. https://doi.org/10.1093/nar/gks839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PO, Klungland A (2010) Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 30(7):1814–1827. https://doi.org/10.1128/MCB.01602-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zdzalik D, Vagbo CB, Kirpekar F, Davydova E, Puscian A, Maciejewska AM, Krokan HE, Klungland A, Tudek B, van den Born E, Falnes PO (2014) Protozoan ALKBH8 oxygenases display both DNA repair and tRNA modification activities. PLoS ONE 9(6):e98729. https://doi.org/10.1371/journal.pone.0098729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sun Q, Liu X, Gong B, Wu D, Meng A, Jia S (2017) Alkbh4 and Atrn act maternally to regulate zebrafish epiboly. Int J Biol Sci 13(8):1051–1066. https://doi.org/10.7150/ijbs.19203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nilsen A, Fusser M, Greggains G, Fedorcsak P, Klungland A (2014) ALKBH4 depletion in mice leads to spermatogenic defects. PLoS ONE 9(8):e105113. https://doi.org/10.1371/journal.pone.0105113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fu D, Jordan JJ, Samson LD (2013) Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis. Genes Dev 27(10):1089–1100. https://doi.org/10.1101/gad.215533.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zheng L, Liu D, Yang W, Yang L, Zuo Y (2020) RaacLogo: a new sequence logo generator by using reduced amino acid clusters. Brief Bioinform. https://doi.org/10.1093/bib/bbaa096

    Article  PubMed  PubMed Central  Google Scholar 

  155. Muller TA, Meek K, Hausinger RP (2010) Human AlkB homologue 1 (ABH1) exhibits DNA lyase activity at abasic sites. DNA Repair 9(1):58–65. https://doi.org/10.1016/j.dnarep.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  156. Ougland R, Lando D, Jonson I, Dahl JA, Moen MN, Nordstrand LM, Rognes T, Lee JT, Klungland A, Kouzarides T, Larsen E (2012) ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. Stem Cells 30(12):2672–2682. https://doi.org/10.1002/stem.1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ensfelder TT, Kurz MQ, Iwan K, Geiger S, Matheisl S, Muller M, Beckmann R, Carell T (2018) ALKBH5-induced demethylation of mono- and dimethylated adenosine. Chem Commun 54(62):8591–8593. https://doi.org/10.1039/c8cc03980a

    Article  CAS  Google Scholar 

  158. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C, Yang CG (2015) Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43(1):373–384. https://doi.org/10.1093/nar/gku1276

    Article  CAS  PubMed  Google Scholar 

  159. Koivisto P, Robins P, Lindahl T, Sedgwick B (2004) Demethylation of 3-methylthymine in DNA by bacterial and human DNA dioxygenases. J Biol Chem 279(39):40470–40474. https://doi.org/10.1074/jbc.M407960200

    Article  CAS  PubMed  Google Scholar 

  160. Falnes PO (2004) Repair of 3-methylthymine and 1-methylguanine lesions by bacterial and human AlkB proteins. Nucleic Acids Res 32(21):6260–6267. https://doi.org/10.1093/nar/gkh964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to our laboratory colleagues for their assistance with the bioinformatics analysis; we would like to thank Kanglu Zhao for helping us to collect the protein datasets.

Funding

This work was supported by National Natural Science Foundation of China (No: 61702290, 61861036), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-18-B01), and Fund for Excellent Young Scholars of Inner Mongolia (2017JQ04). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BX and DL completed the drawing and writing of the paper together, ZW and RT collected the existing data and literature, and YZ was responsible for the overall thinking of the paper.

Corresponding author

Correspondence to Yongchun Zuo.

Ethics declarations

Conflict of interest

None of the authors have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Liu, D., Wang, Z. et al. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell. Mol. Life Sci. 78, 129–141 (2021). https://doi.org/10.1007/s00018-020-03594-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03594-9

Keywords

Navigation