Skip to main content

Advertisement

Log in

Snow cover area analysis and its relation with climate variability in Chandra basin, Western Himalaya, during 2001–2017 using MODIS and ERA5 data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Glaciers and snow cover area (SCA) plays an important role in river runoff in Himalayan region. There is a need to monitor SCA on spatio-temporal basis for better and efficient utilization of water resources. Moderate Resolution Imaging Spectroradiometer (MODIS) provides less cloudy data due to high temporal resolution as compared to other optical sensors for high elevation regions, and its 8-day snow cover product is globally used for snow cover estimation. The main objective of the present paper is to estimate annual and seasonal SCA in Chandra basin, Western Himalaya, and analysis of its variation with elevation, aspect, and slope during 2001 to 2017 using MODIS Terra (MOD10A2) and Aqua (MYD10A2) snow cover product as well as to correlate the same with temperature and precipitation using fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis of the global climate (ERA5) data. The total average SCA observed is 84.94% of basin area during the study period. The maximum annual average SCA was found as 91.23% in 2009 with minimum being 76.37% in 2016. Strong correlation is observed in annual and seasonal SCA with temperature which indicate that SCA variability is highly sensitive to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Akyürek, Z., & Şorman, A. (2002). Monitoring snow-covered areas using NOAA-AVHRR data in the eastern part of Turkey. Hydrological Sciences Journal, 47(2), 243–252. https://doi.org/10.1080/02626660209492927.

    Article  Google Scholar 

  • Archer, D. R., & Fowler, H. J. (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin , global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 8(1), 47–61.

    Article  Google Scholar 

  • ASTER GDEM Validation Team. (2011). ASTER global DEM version 2 validation summary report (26pp). METI & NASA.

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Favier, V., Mandal, A., & Pottakkal, J. G. (2014b). Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. The Cryosphere, 8, 2195–2217. https://doi.org/10.5194/tc-8-2195-2014.

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Linda, A., & Singh, V. B. (2014a). Reconstruction of the annual mass balance of Chhota Shigri glacier , Western Himalaya , India , since 1969. Annals of Glaciology, 55(66), 1–12. https://doi.org/10.3189/2014AoG66A104.

    Article  Google Scholar 

  • Baumgartner, M. F., & Apfl, G.M. (1997). Remote sensing, geographic information systems and snowmelt runoff models-an integrated approach. In: M.F. Baumgartner, G.A. Schultz, and A.I. Johnson, eds. Remote sensing and geographic information systems for design and operation of water resources systems. Proceedings of Rabat SymposiumS3. Rabat, Morocco: Ministry of Public Works Reception and Conference Centre, IAHS Publication, 242, 73–82.

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research - Earth Surface, 115(3), 1–25. https://doi.org/10.1029/2009JF001426.

    Article  Google Scholar 

  • Choubin, B., Alamdarloo, E. H., Mosavi, A., Hosseini, F. S., Ahmad, S., Goodarzi, M., & Shamshirband, S. (2019). Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Regions Science and Technology, 167, 1–11. https://doi.org/10.1016/j.coldregions.2019.102870.

    Article  Google Scholar 

  • Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., Berthier, E., Vincent, C., Wagnon, P., & Trouvé, E. (2019). Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9.

    Article  CAS  Google Scholar 

  • Dexter, L. R. (1986). Aspect and elevation effects on the structure of the seasonal snow cover in Colorado. Thesis (Ph.D.). University of Colorado.

  • Engelhardt, M., Leclercq, P., Eidhammer, T., Kumar, P., Landgren, O., & Rasmussen, R. (2017b). Meltwater runoff in a changing climate (1951-2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Annals of Glaciology, 58(75), 47–58. https://doi.org/10.1017/aog.2017.13.

    Article  Google Scholar 

  • Engelhardt, M., Ramanathan, A., Eidhammer, T., Kumar, P., Landgren, O., Mandal, A., & Rasmussen, R. (2017a). Modelling 60 years of glacier mass balance and runoff for Chhota Shigri Glacier, Western Himalaya, Northern India. Journal of Glaciology, 63(240), 618–628. https://doi.org/10.1017/jog.2017.29.

    Article  Google Scholar 

  • Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2018). Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya. Environmental Monitoring and Assessment, 190, 1–11. https://doi.org/10.1007/s10661-018-6520-y.

    Article  Google Scholar 

  • Gao, Y., Xie, H., Yao, T., & Xue, C. (2010). Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sensing of Environment, 114(8), 1662–1675. https://doi.org/10.1016/j.rse.2010.02.017.

    Article  Google Scholar 

  • Garg, P. K., Shukla, A., Kamal, R., & Singh, A. (2017). Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: a multiparametric approach. Geomorphology, 284, 99–114. https://doi.org/10.1016/j.geomorph.2016.10.022.

    Article  Google Scholar 

  • Gurung, D. R., Kulkarni, A. V., Giriraj, A., Aung, K. S., Shrestha, B., & Srinivasan, J. (2011). Changes in seasonal snow cover in Hindu Kush-Himalayan region. The Cryosphere Discussion, 5, 755–777.

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 54, 127–140.

    Article  Google Scholar 

  • Hall, D. K., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrological Processes, 21(12), 1534–1547.

    Article  Google Scholar 

  • Hersbach, H., Rosnay, P. De, Bell, B., Schepers, D., Simmons, A., Soci, C., et al. (2018). Operational global reanalysis: progress, future directions and synergies with NWP. https://doi.org/10.21957/tkic6g3wm.

  • Immerzeel, W. W., Droogers, P., Jong, S. M. D., & Bierkens, M. F. P. (2009). Largescale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113(1), 40–49.

    Article  Google Scholar 

  • Immerzeel, W. W., Beek, L. P. H. V., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328, 1382–1385. https://doi.org/10.1126/science.1183188.

    Article  CAS  Google Scholar 

  • Jain, S. K., Goswami, A., & Saraf, A. K. (2008). Accuracy assessment of MODIS , NOAA and IRS data in snow cover mapping under Himalayan conditions. International Journal of Remote Sensing, 29(20), 5863–5878. https://doi.org/10.1080/01431160801908129.

    Article  Google Scholar 

  • Jain, S. K., Goswami, A., & Saraf, A. K. (2009). Role of elevation and aspect in snow distribution in Western Himalaya. Water Resources Management, 23(1), 71–83. https://doi.org/10.1007/s11269-008-9265-5.

    Article  Google Scholar 

  • Kendall, B. K. (1975). Enhancement of conditioned reinforcement by uncertainty. Journal of the Experimental Analysis of Behavior, 24(3), 311–314.

    Article  CAS  Google Scholar 

  • Klein, A. G., Hall, D. K., & Riggs, G. A. (1998). Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrological Processes, 12(10–11), 1723–1744. https://doi.org/10.1002/(SICI)1099-1085(199808/09).

    Article  Google Scholar 

  • Kour, R., Patel, N., & Krishna, A. P. (2013). Estimation of snowmelt runoff in Chenab basin, western Himalayas. New Delhi: Scientific Publishers.

    Google Scholar 

  • Kour, R., Patel, N., & Krishna, A. P. (2016a). Effects of terrain attributes on snow cover dynamics in parts of Chenab Basin, Western Himalayas. Hydrological Sciences Journal, 61(10), 1861–1876. https://doi.org/10.1080/02626667.2015.1052815.

    Article  Google Scholar 

  • Kour, R., Patel, N., & Krishna, A. P. (2016b). Assessment of temporal dynamics of snow cover and its validation with hydro-meteorological data in parts of Chenab Basin, western Himalayas. Science China Earth Sciences, 59(5), 1081–1094. https://doi.org/10.1007/s11430-015-5243-y.

    Article  Google Scholar 

  • Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549(7671), 257–260. https://doi.org/10.1038/nature23878.

    Article  CAS  Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Ajai. (2010). Distribution of seasonal snow cover in central and western Himalaya. Annals of Glaciology, 51(54), 123–128. https://doi.org/10.3189/172756410791386445.

    Article  Google Scholar 

  • Kumar, V., Singh, P., & Singh, V. (2007). Snow and glacier melt contribution in the Beas River at Pandoh Dam, Himachal Pradesh, India. Hydrological Sciences Journal, 52(2), 376–388. https://doi.org/10.1623/hysj.52.2.376.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica., 13(3), 245–259.

    Article  Google Scholar 

  • Maskey, S., Uhlenbrook, S., & Ojha, S. (2011). An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Climate Change, 108, 391–400.

    Article  Google Scholar 

  • Meiman, J. R. (1968). Snow accumulation related to elevation, aspect and forest canopy. In: Snow Hydrology. Proceedings of the workshop seminar, Canadian national committee for the international hydrological decade and University of New Brunswick, Fredericton. CNC/IHD Publication, 35–47.

  • Menounos, B., Hugonnet, R., Shean, D., Gardner, A., Howat, I., Berthier, E., Pelto, B., Tennant, C., Shea, J., Noh, M. J., Brun, F., & Dehecq, A. (2019). Heterogeneous changes in western north American glaciers linked to decadal variability in zonal wind strength. Geophysical Research Letters, 46, 200–209.

    Article  Google Scholar 

  • Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S., & Bolch, T. (2018). Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya. Climatic Change, 148(1–2), 219–233. https://doi.org/10.1007/s10584-018-2185-3.

    Article  CAS  Google Scholar 

  • Negi, H. S., Shekhar, M. S., Gusain, H. S., & Ganju, A. (2017). Winter climate and snow cover variability over north-west Himalaya. In P. Goel, R. Ravindra, & S. Chattopadhyay (Eds.), Science and geopolitics of the white world (pp. 127–142). Cham: Springer.

    Google Scholar 

  • Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., Rosnay, P. D., Zhu, C., Wang, W., Senan, R., & Arduini, G. (2019). Evaluation of snow depth and snow cover over the Tibetan plateau in global reanalyses using in situ and satellite remote sensing observations. The Cryosphere, 13, 2221–2239.

    Article  Google Scholar 

  • Pandey, P., Kulkarni, A. V., & Venkataraman, G. (2012). Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto International, 1–12. https://doi.org/10.1080/10106049.2012.705336.

  • Pandey, P., & Venkataraman, G. (2013). Changes in the glaciers of Chandra – Bhaga basin , Himachal Himalaya , India , between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing, 34(15), 5584–5597. https://doi.org/10.1080/01431161.2013.793464.

    Article  Google Scholar 

  • Patel, A., Dharpure, J. K., Mani, S., & Ganju, A. (2019). Estimating surface ice velocity on Chhota-Shigri glacier from satellite data using particle image Velocimetry ( PIV ) technique. Geocarto International, 34, 335–347. https://doi.org/10.1080/10106049.2017.1404142.

    Article  Google Scholar 

  • Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., et al. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/nclimate2563.

    Article  Google Scholar 

  • Pratap, B., Sharma, P., Patel, L. K., Singh, A., Gaddam, V. K., Oulkar, S., & Thamban, M. (2019). Reconciling high glacier surface melting in summer with air temperature in the semi-arid zone of Western Himalaya. Water, 11(8), 18. https://doi.org/10.3390/w11081561.

    Article  Google Scholar 

  • Pu, Z., & Xu, L. (2009). MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theoretical and Applied Climatology, 97(3–4), 265–278. https://doi.org/10.1007/s00704-008-0074-9.

    Article  Google Scholar 

  • Pu, Z., Xu, L., & Salomonson, V. V. (2007). MODIS / Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophysical Research Letters, 34, 34. https://doi.org/10.1029/2007GL029262.

    Article  Google Scholar 

  • Raina, V. K., & Srivastava, D. (2008). Glacier atlas of India. Geological Society of India: Bangalore.

    Google Scholar 

  • Riggs, G. A., Hall, D. K., & Salomonson, V. V. (2006). MODIS Snow Products User Guide to Collection 5 (Vol. 6). https://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf

  • Sahu, R., & Gupta, R. D. (2019). Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery. Geocarto International, 1–21. https://doi.org/10.1080/10106049.2019.1659423.

  • Sahu, R., & Gupta, R. D. (2020). Snow cover analysis in Chandra Basin of Western Himalaya from 2001 to 2016. In J. Ghosh & I. Da Silva (Eds.), Applications of geomatics in civil engineering (pp. 557–566). Roorkee: Springer Singapore. https://doi.org/10.1007/978-981-13-7067-0.

    Chapter  Google Scholar 

  • Sangewar, C.V. & Shukla, S.P. (2009). Inventory of the Himalayan Glaciers: a contribution to the International Hydro- logical Programme. An updated edition. Kolkatta, Geological Survey of India, (Special Publication 34.)

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Shafiq, M., Ahmed, P., Islam, Z., Joshi, P. K., & Bhat, W. A. (2018). Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India. Geocarto International, 34(6), 1–29. https://doi.org/10.1080/10106049.2018.1469675.

    Article  Google Scholar 

  • Sharma, S. S., & Ganju, A. (2000). Complexities of avalanche forecasting in Western Himalaya - an overview. Cold Regions Science and Technology, 31(2), 95–102. https://doi.org/10.1016/S0165-232X(99)00034-8.

    Article  Google Scholar 

  • Sharma, V., Mishra, V. D., & Joshi, P. K. (2014). Topographic controls on spatio-temporal snow cover distribution in northwest Himalaya. International Journal of Remote Sensing, 35(9), 3036–3056.

    Article  Google Scholar 

  • Shiklomanov, I. A., & Rodda, J. C. (2003). In I. A. Shiklomanov & J. C. Rodda (Eds.), World Water Resources at the Beginning of the Twenty-First Century (first ed.). Cambridge: The press Syndicate of the University of Cambridge.

    Google Scholar 

  • Shrestha, A. B., & Joshi, S. P. (2009). Snow cover and glacier change study in Nepalese Himalaya using remote sensing and geographic information system. Journal of Hydrology and Meteorology, 6(1), 26–36.

    Article  Google Scholar 

  • Shukla, S., Kansal, M. L., & Jain, S. K. (2016). Snow cover area variability assessment in the upper part of the Satluj river basin in India. Geocarto International, 32(11), 1–22. https://doi.org/10.1080/10106049.2016.1206975.

    Article  Google Scholar 

  • Shukla, S. P., Mishra, R., & Chitranshi, A. (2015). Dynamics of Hamtah Glacier , Lahaul & Spiti district , Himachal Pradesh. Journal of indian geophysics union, 19(4), 414–421.

    Google Scholar 

  • Singh, P., Haritashya, U. K., & Kumar, N. (2008). Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas. Hydrological Sciences Journal, 53(2), 309–322. https://doi.org/10.1623/hysj.53.2.309.

    Article  Google Scholar 

  • Singh, P., & Jain, S. K. (2002). Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region. Hydrological Sciences Journal, 47(1), 93–106. https://doi.org/10.1080/02626660209492910.

    Article  Google Scholar 

  • Singh, S. K., Rathore, B. P., Bahuguna, I. M., & Ajai. (2014). Snow cover variability in the Himalayan-Tibetan region. International Journal of Climatology, 34(2), 446–452. https://doi.org/10.1002/joc.3697.

    Article  Google Scholar 

  • Snehmani, Bhardwaj, A., Singh, M. K., Gupta, R. D., Joshi, P. K., & Ganju, A. (2015). Modeling the hypsometric seasonal snow cover using meteorological Modelling the hypsometric seasonal snow cover using meteorological parameters. Journal of Spatial Science, 60(1), 51–64. https://doi.org/10.1080/14498596.2014.943310.

    Article  Google Scholar 

  • Soltani, M., Rousta, I., & Taheri, S. M. (2013). Using mann-kendall and time series techniques for statistical analysis of long-term precipitation in Gorgan weather station. World Applied Sciences Journal, 28(7), 902–908.

    Google Scholar 

  • Tahir, A. A., Chevallier, P., Arnaud, Y., Ashraf, M., & Bhatti, M. T. (2015). Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). The Science of the Total Environment, 505, 748–761.

    Article  CAS  Google Scholar 

  • Tang, B., Shrestha, B., Li, Z., Liu, G., Ouyang, H., & Raj, D. (2013). Determination of snow cover from MODIS data for the Tibetan Plateau region. International Journal of Applied Earth Observation and Geoinformation, 21, 356–365. https://doi.org/10.1016/j.jag.2012.07.014.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984-2012. Annals of Glaciology, 58(75), 99–109. https://doi.org/10.1017/aog.2017.18.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2019). An assessment of climate change impacts on glacier mass balance and geometry in the Chandra Basin, Western Himalaya for the 21st century. Environmental Research Communications, 1(4), 1–9. https://doi.org/10.1088/2515-7620/ab1d6d.

    Article  Google Scholar 

  • Tekeli, A. E., Akyürek, Z., Şorman, A. A., Şensoy, A., & Şorman, A. Ü. (2005). Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97(2), 216–230. https://doi.org/10.1016/j.rse.2005.03.013.

    Article  Google Scholar 

  • Tiwari, R. K., Gupta, R. P., & Arora, M. K. (2014). Estimation of surface ice velocity of Chhota- Shigri glacier using sub-pixel ASTER image correlation. Current Science, 106(6), 853–859.

    Google Scholar 

  • Woo, M. K., & Thorne, R. (2006). Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrological Processes, 20, 2129–2139.

    Article  Google Scholar 

  • Vijay, S., & Braun, M. (2016). Elevation Change Rates of Glaciers in the Lahaul-Spiti ( Western Himalaya , India ) during 2000–2012 and 2012–2013. Remote Sensing, 8(12), 1–16. https://doi.org/10.3390/rs8121038.

    Article  Google Scholar 

  • Yellala, A., Kumar, V., & Høgda, K. A. (2019). Bara Shigri and Chhota Shigri glacier velocity estimation in western Himalaya using Sentinel-1 SAR data Bara Shigri and Chhota Shigri glacier velocity estimation in. International Journal of Remote Sensing, 40(15), 5861–5874. https://doi.org/10.1080/01431161.2019.1584685.

    Article  Google Scholar 

  • Yue, S., & Wang, C. H. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218.

    Article  Google Scholar 

  • Zhou, X., Xie, H., & Hendrickx, J. M. H. (2005). Statistical evaluation of remotely sensed snow-cover products with constraints from streamflow and SNOTEL measurements. Remote Sensing of Environment, 94(2), 214–231. https://doi.org/10.1016/j.rse.2004.10.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Sahu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, R., Gupta, R.D. Snow cover area analysis and its relation with climate variability in Chandra basin, Western Himalaya, during 2001–2017 using MODIS and ERA5 data. Environ Monit Assess 192, 489 (2020). https://doi.org/10.1007/s10661-020-08442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08442-8

Keywords

Navigation