

This discussion paper is/has been under review for the journal Solid Earth (SE). Please refer to the corresponding final paper in SE if available.

Rapid revegetation by sowing seed mixtures of shrub and herbaceous species

J. J. Feng^{1,*}, C. L. Zhang^{2,*}, and T. N. Zhao¹

Received: 12 January 2015 - Accepted: 12 January 2015 - Published: 23 January 2015

Correspondence to: T. Zhao (zhtning@bjfu.edu.cn)

These authors contributed equally to this work.

Published by Copernicus Publications on behalf of the European Geosciences Union.

iscussion

Discussion Paper

Discussion Paper

Discussion Paper

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

Printer-friendly Version

¹College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China ²Ecological Restoration Research Base of Beijing Environmental Protection Research Institute of Light Industry, Beijing 100089, China

Fast revegetation by means of sowing seed mixture of shrub and herbaceous species is a measure to prevent bare soils from wind and water erosion. Field experiment was used to test the effect of species selection and the ratio of shrub to herbaceous species on vegetation formation and shrub growth. Results showed that herbaceous species hastened cover formation and maintained a high coverage for longer period. However, the growth of shrubs was hindered. In North China Plain or where the soil and climate are similar, the ratio of shrub to herbaceous seeds is proposed to be 6 : 4–7 : 3 (weight ratio). Among the herbaceous species tested, *Festuca arundinacea* Schreb. grows relatively slow so it should be mixed with other fast-growing species in the practice of rapid revegetation, and a seeding density lower than 6 g m⁻² is proposed when applied; *Orychophragmus violaceus* O. E. Schulz. wilts when the seeds are ripe, leading to a significant decrease of coverage, so other species with different phenology should be involved when it is applied; *Viola philippica* Car. is a good ground cover plant, which grows fast and maintains a stable coverage form July to October, and a seeding density of 1.5 g m⁻² is proposed for rapid revegetation.

1 Introduction

Development and construction projects often cause damage to native vegetation. In abandoned quarries or surface mines, recolonization of plants is very difficult (Ballesteros et al., 2012) because of the destruction of natural soil structure and seed bank, as well as the limitation of nutrition and water (Jim, 2001; Haritash et al., 2007). Even though technical restoration can accelerate succession, it takes decades to achieve a complex self-sustainable ecosystem (Zhang et al., 2013). During the succession, wind or water erosion may occur when the vegetation coverage is still low, further decreasing soil nutrient (Zuazo and Pleguezuelo, 2008) and thus hindering the process of revegetation (Wang et al., 2005). Geologic hazards may also happen if no protec-

iscussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

Full Screen / Esc
Printer-friendly Version

Close

Discussion

Full Screen / Esc

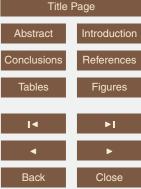
Printer-friendly Version

Interactive Discussion

tive measures are applied (Robbins et al., 2013). Heavy metals in mineral waste may be transported by wind force and cause soil pollution (Brotons et al., 2010). Besides, during construction of road and buildings, temporary dumps without covering may be eroded, resulting in soil loss.

Soil covering is a useful measure to protect soil from wind and water erosion (Mu, 2010), where vegetation plays an important role (Sterk, 2003). The risk and intensity of wind and water erosion decrease with increased vegetation cover (Cai, 2001; Maurer et al., 2009; Kefi et al, 2011; Houyou et al., 2014). Plants increase soil surface roughness, decrease wind speed, as a result, the erosivity and erodibility decrease (Borrelli et al., 2014). Plants increase concentration time during rainfall events and increase infiltration, so less runoff is produced.

Different types of vegetation response differently to wind and water erosion. Trees with large canopy are more effective in reducing wind speed, whereas shrubs are more effective in trapping transporting materials (Leenders et al., 2007). Compared to herbaceous species, shrubs have more developed root systems to improve soil structure and conserve water in deep layers, resulting in a better effect on soil and water conservation (Huang et al., 2006; Wei et al., 2009), and its effect is less affected by rain intensity compared to herbs (Zhang et al., 2014). Trees develop slowly (Ji et al., 2011), and have limited effect on soil protection during the early stage of development (Zhang and Shao, 2003), while herbs germinate and grow fast, rapidly cover the ground to prevent splash erosion and decrease runoff (Franklin et al., 2012).


Seed mixture of shrub and grass takes the advantage of both taxons, but the competition for light, water and nutrition may affect vegetation cover formation (Milton and Dean, 1995) and thus the effect of soil protection. As shown by some researches, the competition from grasses might cause severe growth decline of woody plants, especially during their early stage of development (Gordon et al., 1989; Denslow et al., 2006). Because the interaction between woody species and herbaceous species are complicated, it was proposed that traits such as niche breadth and competitiveness for different resources of different species should be thoroughly studied, and the selec-

SED

7, 369-391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

tion of species should base on environmental condition including soil, water and light (Heneghan et al., 2008; Abe et al., 2014; Oliveira et al., 2014). By means of species selection and controlling seeding density, positive effect can be attained for shrub establishment (Franklin et al., 2012).

In this research, measure of fast revegetation by means of sowing seed mixture of shrub and herbaceous species was tested using field experiment. We focused on: (1) which seed mixture of shrub and grass (which species and what proportion) could provide a fair or good coverage for a long period; (2) how did species and the proportion of different species affect the speed of cover formation and the stability of coverage (specifically, we tested the effect of the ratio of shrub to herbaceous seeds, $R_{\rm s/h}$); and (3) the effect of different herbaceous species on the growth of shrub. Based on our research, advice will be proposed on species selection and determination of their proportion in seed mixtures during the practice of revegetation in: (1) plains where wind erosion occurs, (2) gentle slopes where water erosion occurs and plant growth is not significantly affected by the slope, (3) seriously degraded sites such as abandoned mines where measures such as topsoil covering have been applied to improve soil quality.

2 Materials and methods

2.1 Study area

The research was conducted in Ecological Restoration Research Base of Beijing Environmental Protection Research Institute of Light Industry (EPRILI), located in Changping County, Beijing (40°9′56.73″ N, 116°9′1.04″ E, 57 m a.s.l.). Beijing has a continental monsoon climate with a rainy season from June to September. The mean annual precipitation is 620 mm (historical data). Monthly precipitation and average temperature during the experimental period were measured using Davis Vantage Pro2 Weather Station, and the data are shown in Fig. 1.

SED

7, 369-391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Close

Printer-friendly Version

Full Screen / Esc

Back

The local soil used for experiment was sandy loam. The pH value was 7.44. The chemical properties of the soil is shown in Table 1 (Liang, 2013).

2.2 Experimental design

Four native species were studied, including a shrub species *Amorpha fruticosa* L., and three herbaceous species *Festuca arundinacea* Schreb., *Viola philippica* Car. and *Orychophragmus violaceus* O. E. Schulz. These species are commonly seen in North China Plain, and former researches have shown their tolerance against water or nutrient deficiency. The designs of seed mixtures were shown in Table 2.

Every design of seed mixture was tested in a 4.5 m long, 1.3 m wide plot, so there were altogether 40 plots. Seed mixtures with a seeding density of 15 g m⁻² were manually sowed without fertilizer in May 2013. Non-woven fabrics (a planar, permeable, polymeric textile material) was used as soil cover to protect the seeds from erosion and enhance humidity. Irrigation was applied until mid-June, after when precipitation became the only water source for plants.

2.3 Data collection and analysis

From July to October 2013, three 1 \times 1 m² sample plots were randomly taken in each plot to measure the coverage of *A. fruticosa* and the total coverage of all species, three times a month. Invaded native species were recorded. A field study was made in May 2014, before the rainy season and total coverage of each plot was measured. In this study, a coverage of 60 % was assumed to be fair, and a coverage of 80 % was assumed to be good, because erosion risk was low in in slopes under 30° with a fractional vegetation cover of 60–80 % based on an erosion model (Vrieling et al., 2006). The duration of total coverage higher than 60 and 80 % were calculated respectively

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

Back Close

Full Screen / Esc

Printer-friendly Version

Duration of fair or good coverage
the number of days when total coverage ≥ 60 or 80 %
× 120 d

the number of days for coverage measurement

Coefficient of variation (CV) of total coverage during the experimental period was calculated to describe the stability of total vegetation coverage. Each CV value of different $R_{\rm s/h}$ taken as a sample, Friedman test for non-parametric paired samples was used to test the significance of variation between the CV values of different combinations of shrub and herbaceous species.

In the end of October 2013, 15 individuals of *A. fruticosa* in each plots were randomly taken to measure height and ground diameter. ANOVA was used to test the effect of herbaceous species and $R_{\rm s/h}$ on the growth of *A. fruticosa* where T0 was used as control. Normality of samples was tested before significance test, and when the effect was significant (P < 0.05), LSD was used to test comparisons among different seed mixture designs. Statistic analysis was performed using SPSS program.

3 Results

3.1 The effect of species on total coverage

As shown in Fig. 2, from July to October, T4 had the highest total coverage, regardless of the the ratio of shrub to herbaceous seeds $(R_{\rm s/h})$. The performance of other seed mixtures differed with time. In July, when $R_{\rm s/h}$ were 1:9, 3:7, 4:6 and 5:5, T2 had the second highest total coverage, and when $R_{\rm s/h}$ were 2:8, 6:4, 8:2 and 9:1, T3 had the second highest total coverage. T1 had the lowest total coverage in July. From August to October, when $R_{\rm s/h}$ were 1:9–3:7, T2 had a higher total coverage than T1, and when $R_{\rm s/h}$ were 6:4–9:1, T1 had a higher total coverage value than T2. T3 had

Discussion

(1)

0

7, 369-391, 2015

SED

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Introduction

References

Figures

Abstract

Conclusions

Tables

Discussion Paper | Disc

Discussion Paper

Discussion Paper

IIABBClose

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

374

3.2 The effect of $R_{s/h}$ on total coverage

20

25

As shown in Fig. 3, $R_{\rm s/h}$ had different effects on the dynamics of total coverage in different species combination.

- T0: A. fruticosa took longer time to form a fair coverage and maintained a fair or good coverage for much shorter period compared to herbaceous species. Total coverage of T0 was lower than 60 % in July and October, but higher than 80 % in August and September.
- T1: in July, 6 out of 10 plots including t2, t5-t9 had a total coverage higher than 60%, among which t7 had a total coverage higher than 80%. In August, except for t0 and t1, all plots had a total coverage higher than 80%. Since September, all plots had a total coverage higher than 80%.
- T2: in July, 7 out of 9 plots including t1, t3-t8 had a total coverage higher than 60%, among which t3 and t5 had a total coverage higher than 80%. In August, except for t9, all plots had a total coverage higher than 80%. Since September, t1-t7 had a total coverage higher than 80%. The total coverage of t8 and t9 was good in September, but both fell to 77% in October.
- T3: in July, 9 out of 10 plots including t0, t2-t9 had a total coverage higher than 60%, among which t6 had a total coverage higher than 80%. In August, all plots had a total coverage higher than 60%, among which t0, t6-t9 had a total coverage higher than 80%. The total coverage of most plots was maintained till October except for t2, which enhanced total coverage since September, t1 and t3-t5, which enhanced total coverage in October, and t9, which decreased total coverage to a value lower than 60% in October.
- T4: since July, all plots achieved a total coverage higher than 80 %.

iscussion

Sion Faper

Discussion Pape

Discussion Paper

Discussion Paper

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

→

Close

Full Screen / Esc

Back

Printer-friendly Version

From July to October (counted as 120 d), duration of fair coverage was 76, 107, 112, 112, and 120 d (mean values of different $R_{\rm s/h}$, the same below) from T0 to T4, respectively. Duration of good coverage was 65, 84, 95, 82 and 109 d from T0 to T4, respectively. In this respect, T4 had the best performance, followed by T2, T3, T1 and T0. T1 and T3 had relatively poor performance compared to T4 and T2, but T1t5, T1t7, T3t7 and T3t8 maintained a good coverage more than 100 d. Even though T2 had the second best performance in general, T2t2 and T2t9 maintained a shorter period of fair or good coverage compared to T1 or T3 of the same $R_{\rm s/h}$. Remarkably, when $R_{\rm s/h}$ was 6:4 and 7:3, all combinations of shrub and herbaceous seeds maintained a fair coverage for 120 d, i.e. the whole experimental period. As a result, this ratio of shrub to herbaceous seeds is proposed for seed mixtures applied in rapid revegetation.

T0 not only had the shortest duration of fair or good coverage, but also had the highest coefficient of variation (46%), indicating its least stability among all plots. The coefficient of variation from T1 to T4 were 19, 15, 19 and 9%, respectively. The coefficient of variation of T4 was significantly lower than those of T1, T2 and T3 (P < 0.05). In T1, plots with a $R_{\rm s/h}$ of 5:5–9:1 had relatively low coefficient of variation, ranging from 10 to 16 %. In T2, plots with a $R_{\rm s/h}$ of 1:9 and 3:7–8:2 had relatively low coefficient of variation, ranging from 10 to 15 %. In T3, plots with a $R_{s/h}$ of 2:8, 3:7, 6:4–8:2 had relatively low coefficient of variation, ranging from 11 to 15%.

3.4 The effect of herbaceous species on the coverage of A. fruticosa

The average coverage of T0 during the experiment period was 74.6%. Assuming the coverage was proportional to the amount of seeds we sowed, some seed mixtures had a positive effect on the coverage of A. fruticosa, including T1t1-T1t7, T3t8-T3t9 and T4t7-T4t9, while other seed mixtures had a negative effect on the coverage of A. fruticosa, as shown in Fig. 4.

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Discussion Paper

Discussion Paper

Discussion Paper

Abstract Introduction Conclusions References Tables **Figures** Close Full Screen / Esc Printer-friendly Version Interactive Discussion

J. J. Feng et al.

Abstract Conclusions Introduction References

Tables

Figures

Full Screen / Esc

SED

7, 369–391, 2015

Rapid revegetation

by sowing seed

mixtures

Title Page

Printer-friendly Version

Interactive Discussion

When A. fruticosa was sowed alone, fair coverage was achieved on 30 July. When herbaceous species were sowed with A. fruticosa with a $R_{s/h}$ ranged from 1:9 to 3:7, the coverage of A. fruticosa was lower than 60 % during the whole experimental period in any combination of seed mixtures. When the $R_{\rm s/h}$ ranged from 4:6 to 7:3, the 5 coverage of A. fruticosa in T1 reached 60% first, on 30 August, 20 July, 30 July and 10 August, respectively. When the $R_{\rm s/h}$ ranged form 8:2 to 9:1, the coverage of A. fruticosa in T4 reached 60 % first, both on 20 July. In plots of T1t9, T2t7-T2t9, T3t6-T3t9, T4t6-T4t7, A. fruticosa also achieved a coverage of 60%, but in later period of the rainy season.

3.5 The effect of $R_{s/h}$ and herbaceous species on the growth of A. fruticosa

There was a negative effect of herbaceous species on the growth of A. fruticosa, as shown in Table 3. In T1, height growth of A. fruticosa was significantly lowered when $R_{\rm s/h}$ were 1:9-3:7 and 6:4-8:2, while ground diameter was significantly lowered when $R_{\rm s/h}$ were 1:9, 2:8 and 7:3, compared to T0. In T2, height and diameter growth of A. fruticosa were significantly decreased in all $R_{s/h}$ compared to T0. In T3, height growth of A. fruticosa was significantly lower than T0 in all $R_{\rm s/h}$, while ground diameter was significantly lower than T0 when $R_{\rm s/h}$ were 2:8-6:4 and 9:1. In T4, height growth of A. fruticosa was significantly lowered when $R_{\rm s/h}$ were 3:7-5:5 and 7:3, while ground diameter was significantly lowered when $R_{\rm s/h}$ was 4:6, compared to T0.

When different combinations of species with the same $R_{\rm s/h}$ were compared (T1-T4), the values of height and ground diameter were the highest in T3 when the $R_{\rm s/h}$ were 1:9 and 2:8. When the $R_{\rm s/h}$ were 3:7–5:5, T1 had highest value of height and generally the highest value of ground diameter. When the $R_{\rm s/h}$ were 6:4–9:1, T4 had the highest values of height and ground diameter.

4.1 The effect of species selection and $R_{s/h}$ on total coverage

Vegetation cover is one of the main factor controlling the effect of soil protection from wind and water erosion (Ferreira and Panagopoulos, 2014). An early recovery of vegetation cover can prevent water erosion during the rainy season, while the stubble and litters can prevent wind erosion during the following dry season. Two months after sowing, total coverage of T0, T1t0, T1t1, T1t3, T1t4, T2t2, T2t9 and T3t1 were lower than 60 %, so they are not proposed for rapid revegetation.

Based on the speed of cover formation and the stability of coverage, sowing seed mixtures performed better than sowing shrubs alone, which was in consistent with Gilardelli et al. (2014). Among the combinations of shrub and herbaceous species, T4 showed its excellency in fast ground cover formation and high coverage maintenance around the whole experimental period, most attributed to *V. philippica*. According to our results, sowing *V. philippica* with a seeding rate of 1.5 g m⁻² is efficient in rapid revegetation in northern China or regions where the climate and soils are similar. A higher seeding rate may be a waste of seeds and more seriously, the dense ground cover may hinder the recolonization of other native species. In plots where *O. violaceus* instead of *V. philippica* was sowed with *A. fruticosa*, a coexistence with local annual or perennial herbs such as *Bidens pilosa* L., *Acalypha australis* L., *Amaranthus retroflexus* L., *Euphorbia humifusa* Willd., *Abutilon theophrasti* Medic., *Artemisia annua* L., *Convolvulus arvensis* L. and *Polygonum lapathifolium* L. was observed, but not in T4.

Other than T4, T2 had a fast cover formation when $R_{\rm s/h}$ was low, and T3 had a fast cover formation when $R_{\rm s/h}$ was high. Sowing *F. arundinacea* alone was not appropriate for rapid revegetation because it covered the ground slowly. But considering the whole experimental period, T1 had a relatively high total coverage when $R_{\rm s/h}$ was high. As a result, *F. arundinacea* should be mixed with other fast-growing species and a seeding rate of 1.5–6.0 g m⁻² is proposed in order to achieve high value of total coverage. T3, i.e. *O. violaceus* covered soil rapidly, but had the lowest total coverage considering the

iscussion

Discussion

Discussion Paper

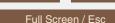
Discussion Paper

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.


Title Page

Abstract Introduction

Conclusions References

Tables Figures

Printer-friendly Version

whole experimental period. Because *O. violaceus* wilted when the seeds were ripe, a significant decline of *O. violaceus* was observed, though total coverage was hardly affected thanks to the development of *A. fruticosa*.

Before the experiment, we supposed that the stability of total coverage was correlated with the tolerance to environmental stress. For example, because of the stochastic nature of precipitation, wilting, defoliation or die off during water deficiency may weaken the protective effect of vegetation when rain storm finally occurs (Zuazo and Pleguezuelo, 2008). Compared to herbs, woody species were supposed to maintain a more stable coverage because they could use the resource in the deep soil layers or at least they have longer life (Wang et al., 2005). Contrary to expectation, results showed that T0 had the highest variable coefficient among all plots. If *A. fruticosa* could use the water stored in the deep layers, its coverage would not fluctuate in spite of the temporal water deficiency (the longest interval between rainfall events was 17 d during our experiment), and thus the coefficient of variation would be small. The high value of variable coefficient in T0 indicated that the ability to conserve water and the resistance against environmental stress was not fully developed in *A. fruticosa*.

Some plots including T2t2, T2t9 and T3t1 had a low total coverage, and no pattern was observed between these plots and the adjacent plots. It was supposed that random factors such as the variation of seeds and microsite conditions accounted for the poor performance of these plots. However, natural environments are much more diverse than our study plots. Microsites are spatially heterogeneous, weather events are stochastic by nature, and the inter- or intraspecific relationship may vary in different stages of individual development and community succession (Zanini et al., 2006). To deal with the spatial and temporal heterogeneity, more species should be used in artificial revegetation because of their adaptation to different niches and thus the reconstruction of the whole plant community is more likely to succeed even if some species fail (Sheley and Half, 2006).

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ✓ ▶I

Back Close

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Discussion Paper

Discussion Pape

J. J. Feng et al.

Title Page **Abstract** Introduction Conclusions References **Tables Figures** Back Close Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The effect of herbaceous species on the growth of shrub

The coverage of A. fruticosa in T1t5, T4t8 and T4t9 reached 60% 10d earlier than T0. even though fewer seeds were sowed in these plots, indicating a positive effect of herbaceous species on the coverage of A. fruticosa. Compared to T0, the average coverage of A. fruticosa during the study were higher in T1t1-T1t7, T3t8-T3t9 and T4t7-T4t9, but average height and ground diameter were lower in these plots, indicating that the individuals were smaller, but the number of individuals was higher when herbaceous species were sowed together. The result was in consistent with the research by Mason et al. (2013), which showed that ground cover was favorable for shrub germination but disadvantageous to growth. Moreover, when a field study was made in May 2014, it was observed that the sprout number of each individual of A. fruticosa ranged from 3 to 5 in T0, but more than 6 in T1t9 and T4t9, which may partly account for the inconsistency between high coverage and low growth in these plots.

Competition for resources, such as water, may explain the decline of growth of A. fruticosa. Soil water content is determined by the input such as precipitation and irrigation together with the output such as infiltration and evapotranspiration. Plants can increase infiltration rate (Ji et al., 2008) and water holding capacity but also consume a large amount of water during transpiration. As a result, soil water content may be increased or decreased by coexisting species (Bréda et al., 1995, D'Odorico et al., 2007). Competition may also exist for nutrition or light, but the relationship differs among different species (Denslow et al., 2006; Mendoza-Hernández et al., 2014). Researches indicated a very comprehensive relationship between different coexisting species, not only negative but also positive relationship were shown in different studies (Harmer et al., 2011; Ballesteros et al., 2012; Zhang et al., 2013; Oliveira et al., 2014).

Other than interspecific competition, intraspecific competition exists. Competition for light between individuals of A. fruticosa was more intense in T0 than other plots, especially when $R_{\rm s/h}$ was low. In T0, short and weak individuals may be weeded out and only the tall and strong ones which have access to light survive, leading to a higher

Discussion

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page Abstract Introduction Conclusions References Tables **Figures** Close

Printer-friendly Version

Interactive Discussion

Full Screen / Esc

mean value of growth. Compared to height, ground diameter was less correlated to the competition for light, so it was also less corrected to $R_{\rm s/h}$. However, this hypothesis needs to be tested.

Conclusions

Firstly, shrub cover was formed slower than ground cover, and was maintained for a shorter period at least in the early stage of development. When herbaceous species were sowed with herbs, total coverage increased and was maintained for a longer period, but the growth of shrubs was hindered. Secondly, in the practice of rapid revegetation in North China Plain or where the soil and climate are similar, the ratio of shrub to herbaceous seeds is proposed to be 6:4-7:3 by mass. Thirdly, some traits of the herbaceous species tested are summarized: the growth of F. arundinacea is relatively slow so it should be combined with other fast-growing species and its seeding density is proposed to be lower than $6 \, \mathrm{g \, m^{-2}}$ when applied; O. violaceus wilts when the seeds are ripe, leading to a significant decrease of coverage, so other species with different phenology should be involved when it is applied; V. philippica is a good ground cover plant, which grows fast and maintains a stable coverage for a long period, and a seeding density of 1.5 g m⁻² is sufficient for rapid revegetation in North China Plain.

Acknowledgements. This work was supported by the R&D Special Fund for Forestry Public Welfare Industry-Key re-vegetation technology research on woodland damaged by construction (200904030).

References

Abe, T., Yasui, T., Yokoya, M., and Knapp, M.: Regaining habitats from invasive weeds by planting limited-recruitment endemic trees on an oceanic island: successes and failures 11 years later, J. For. Res.-Jpn., doi:10.1007/s10310-014-0469-7, in press, 2014.

- Ballesteros, M., Cañadas, E. M., Foronda, A., Fernández-Ondoño, E., Peñas, J., and Lorite, J.: Vegetation recovery of gypsum quarries: short-term sowing response to different soil treatments, Appl. Veg. Sci., 15, 187–197, 2012.
- Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., and Montanarella, L.: Towards a pan-European assessment of land susceptibility to wind erosion, Land Degrad. Dev., doi:10.1002/ldr.2318, in press, 2014.
- Bréda, N., Granier, A., and Aussenac, G.: Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (*Quercus petraea* (Matt.) Liebl.), Tree Physiol., 15, 295–306, 1995.
- Brotons, J. M., Díaz, A. R., Sarría, F. A., and Serrato, F. B.: Wind erosion on mining waste in southeast Spain, Land Degrad. Dev., 21, 196–209, 2010.
- Cai, Q.-G.: Soil erosion and management on the Loess Plateau, J. Geogr. Sci., 11, 53-70, 2001.
- Denslow, J. S., Uowolo, A. L., and Hughes, R. F.: Limitations to seedling establishment in a mesic Hawaiian forest, Oecologia, 148, 118–128, 2006.
- D'Odorico, P., Caylor, K., Okin, G. S., and Scanlon, T. M.: On soil moisture vegetation feed-backs and their possible effects on the dynamics of dryland ecosystems, J. Geophys. Res.-Biogeosci., 112, G04010, doi:10.1029/2006JG000379, 2007.
- Ferreira, V. and Panagopoulos, T.: Seasonality of Soil Erosion Under Mediterranean Conditions at the Alqueva Dam Watershed, Environ. Manage., 54, 67–83, 2014.
- Franklin, J. A., Zipper, C. E., Burger, J. A., Skousen, J. G., and Jacobs, D. F.: Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines, New Forest., 43, 905–924, 2012.
- Gilardelli, F., Sgorbati, S., Citterio, S., and Gentili, R.: Restoring limestone quarries: hay-seed, commercial seed mixture or spontaneous succession?, Land Degrad. Dev., 25, doi:10.1002/ldr.2244, in press, 2014.
- Gordon, D. R., Menke, J. M., and Rice, K. J.: Competition for soil water between annual plants and blue oak (*Quercus douglasii*) seedlings, Oecologia, 79, 533–541, 1989.
- Haritash, A. K., Baskar, R., Sharma, N., and Paliwal, S.: Impact of slate quarrying on soil properties in semi-arid Mahendragarh in India, Environ. Geol., 51, 1439–1445, 2007.
- Harmer, R., Morgan, G., and Beauchamp, K.: Restocking with broadleaved species during the conversion of Tsuga heterophylla plantations to native woodland using natural regeneration, Eur. J. For. Res., 130, 161–171, 2011.

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Printer-friendly Version

Full Screen / Esc

- Heneghan, L., Miller, S. P., Baer, S., Callaham Jr., M. A., Montgomery, J., Pavao-Zuckerman, M., Rhoades, C. C., and Richardson, S.: Integrating Soil Ecological Knowledge into Restoration Management, Restor. Ecol., 16, 608–617, 2008.
- Houyou, Z., Bielders, C. L., Benhorma, H. A., Dellal, A., and Boutemdjet, A.: Evidence of strong land degradation by wind erosion as a result of rainfed cropping in the Algerian steppe: a case study at Laghouat, Land Degra. Dev., doi:10.1002/ldr.2295, in press, 2014.
- Huang, Z.-L., Chen, L.-D., Fu, B.-J., Lu, Y.-H., Huang, Y.-L., and Gong, J.: The relative efficiency of four representative cropland conversions in reducing water erosion: evidence from long-term plots in the Loess hilly area, China, Land Degrad. Dev., 17, 615–627, 2006.
- Ji, Z.-H., Liao, C.-F., Yang, Y.-X., Fang, H. D., Pan, Z.-X., and Sha, Y.-C.: Vegetation Restoration Technique System and Its Ecological Functions of the Degraded Ecosystem in the Arid-Hot Valleys-Taking the Example of Typical Mode in Small Watershed of Yuanmou, Wuhan University Journal of Natural Sciences, 13, 257–266, 2008.
- Jim, C. Y.: Ecological and Landscape Rehabilitation of a Quarry Site in Hong Kong, Restor. Ecol., 9, 85–94, 2001.
- Kefi, M., Yoshino, K., Setiawan, Y., Zayani, K., and Boufaroua, M.: Assessment of the effects of vegetation on soil erosion risk by water: a case of study of the Batta watershed in Tunisia, Environmental Earth Sciences, 64, 707–719, 2011.
- Leenders, J. K., van Boxel J. H., and Sterk, G.: The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso, Earth Surf. Proc. Land., 32, 1454–1474, 2007.
- Liang, S.-J.: Study on the Suitability of River Ecological Slope Protection Measures in North China Plain Region, Beijing Forestry University, 2013.
- Mason, T. J., French, K., and Jolley, D.: Arrival order among native plant functional groups does not affect invasibility of constructed dune communities, Oecologia, 173, 557–568, 2013.
- Maurer, T., Herrmann, L., and Stahr, K. The effect of surface variability factors on wind-erosion susceptibility: A field study in SW Niger, J. Plant Nutr. Soil Sc., 172, 798–807, 2009.
- Mendoza-Hernández, P. E., Rosete-Rodríguez, A., Sánchez-Coronado, M. E., Orozco, S., Pedrero-López, L., Méndez, I., and Orozco-Segovia, A.: Vegetation patches improve the establishment of *Salvia mexicana* seedlings by modifying microclimatic conditions, Int. J. Biometeorol., 58, 853–866, 2014.
- Milton, S. J. and Dean, W. R. J.: South Africa's arid and semiarid rangelands, why are they changing and can they be restored?, Environ. Monit. and Assess., 37, 245–264, 1995.

SED

7, 369–391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

Full Screen / Esc

Close

Back

Printer-friendly Version

- SED
- 7, 369–391, 2015
- Rapid revegetation by sowing seed mixtures
 - J. J. Feng et al.
- Title Page

 Abstract Introduction

 Conclusions References

 Tables Figures

 I

 I

 Back Close

 Full Screen / Esc
- Printer-friendly Version
 - Interactive Discussion
 - © **()**

- Mu, Q: Effect of nonerodible grains on wind erosion control, J. Geophys. Res.-Atmos., 115, D21103, doi:10.1029/2010JD014221, 2010.
- Oliveira, G., Clemente, A., Nunes, A., and Correia, O.: Suitability and limitations of native species for seed mixtures to revegetate degraded areas, Appl. Veg. Sci., 17, 726–736, doi:10.1111/avsc.12099, 2014.
- Robbins, J. C., Petterson, M. G., Mylne, K., and Espi, J. O.: Tumbi Landslide, Papua New Guinea: rainfall induced?, Landslides, 10, 673–684, 2013.
- Sheley, R. L. and Half, M. L.: Enhancing Native Forb Establishment and Persistence Using a Rich Seed Mixture, Restor. Ecol., 14, 627–635, 2006.
- Sterk, G.: Causes, consequences and control of wind erosion in Sahelian Africa: a review, Land Degrad. Dev., 14, 95–108, 2003.
- Vrieling, A., Sterk, G., and Vigiak, O.: Spatial evaluation of soil erosion risk in the West Usambara Mountains, Tanzania, Land Degrad. Dev., 17, 301–319, 2006.
- Wang, Z.-Y., Wang, G.-Q., Li, C.-Z., and Wang, F.-X..: A preliminary study on vegetation-erosion dynamics and its applications, Sci. China Ser. D, 48, 689–700, 2005.
- Wei, W., Chen, L., Fu, B., Lü, Y.-H., and Gong, J.: Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China, Hydrol. Process., 23, 1780–1791, 2009.
- Zanini, L., Ganade, G., and Hübel, I.: Facilitation and competition influence succession in a subtropical old field, Plant Ecol., 185, 179–190, 2006.
- Zhang, H. and Shao, X.: Improving agroforestry in sandy subhumid northwestern Shandong, China, Land Degrad. Dev., 14, 421–429, 2003.
- Zhang, H., Zhuang, X.-Y., and Chu, L.-M.: Plant recruitment in early development stages on rehabilitated quarries in Hong Kong, Restor. Ecol., 21, 166–173, 2013.
- Zhang, X., Yu, G.-Q., Li, Z.-B., and Li, P.: Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types, Int. Ser. Prog. Wat. Res., 28, 2415–2433, 2014.
 - Zuazo, V. H. D. and Pleguezuelo, C. R. R.: Soil-erosion and runoff prevention by plant covers. A review, Agron. Sustain. Dev., 28, 65–86, 2008.

Discussion Paper

Discussion Paper

7, 369-391, 2015

SED

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction Conclusions References Tables Figures

I◀

ÞΙ

Printer-friendly Version

Table 1. Chemical properties of the local soil.

Organic matter (g kg ⁻¹)		Available N (mg kg ⁻¹)		
4.72	2.47	19.06	22.23	4.74

Table 2. Designs of seed mixture.

No.	Species	Ratio by mass
T1	A. fruticosa: F. arundinacea	0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1
T2	A. fruticosa: O. violaceus: V. philippica	The ratio of shrub to herbs was the same with T1, and the masses of <i>O. violaceus</i> and <i>V. philippica</i> were the same.
Т3	A. fruticosa: O. violaceus	Same with T1.
T4	A. fruticosa: V. philippica	Same with T1.
T0	A. fruticosa	

Note: the thousand grain weight of A. fruticosa, F. arundinacea, O. violaceus, and V. philippica are 6.163, 2.814, 2.175 and 0.981 g respectively. Each plot is denoted as Txty. The capital letter T indicates species, and the following x ranges from 0 to 4, indicating different combinations of species. The small letter t indicates the proportion of shrub seeds, and the following y ranges from 0 to 9, indicating the percentage of A. fruticosa in the seed mixture by mass, which equals to y/10. Data of T2t0 are deleted because of deficient setting of the experimental plot.

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

4

Back

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
I ∢	►I			
4	•			
Back	Close			

Full Screen / Esc

Printer-friendly Version

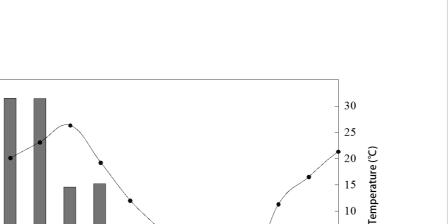
Interactive Discussion

Table 3. Average height and ground diameter of *A. fruticosa*.

	Height (cm)				Ground diameter (cm)			
	T1	T2	Т3	T4	T1	T2	T3	T4
t1	34*	30*	35*	_	0.423*	0.431*	0.668	_
t2	31 _A	$44_{\rm B}^{*}$	45* _{AB}	_	0.328 _A *	0.672_{B}^{*}	0.679_{B}^{*}	_
t3	52 _A	33 _B	39_{B}^{*}	49_{A}^{*}	0.639 _{AB}	0.563 _A	0.594 _{AB}	0.781 _B
t4	65 _A	35 _B	43 _B	50 [*]	0.807	0.594*`	0.626*	0.737^{*}
t5	73 _A	36°C	49 _{BC}	61 _{AB}	0.795 _A	0.515_{B}^{*}	0.705^*_{AB}	0.834_{A}
t6	63* _{AB}	50 _A	55 _A	82 _B	0.679 _A	0.652_{A}^{*}	0.756* _{AB}	1.063 _B
t7	53 _A	56 _A	66**	73 _B	0.593 _A *	0.669^{*}_{A}	0.853_{B}	0.889_{B}^{-}
t8	55 _A	63^{*}_{AB}	70 _B	89 _C	0.715	0.687*	0.837	0.899
t9	79 _{AC}	54 _B	73 _A	93 _C	0.849 _A	0.571 _B	0.761 _A	0.858_{A}
T0	92			0.926				

Note: the superscript * indicates a significant difference compared to T0 (P < 0.05). The subscript of the same letter or the absence of subscript indicates that the mean values of height or ground diameter in the same row were not significantly different. No A. fruticosa survived in T4t1 and T4t2, and only 5 and 2 individuals of A. fruticosa survived in T2t1 and T3t1 respectively.

10


5

0

-5

May-14

Mar-14

Jan-14

Figure 1. Monthly precipitation and average temperature.

Jul-13

Sep-13

160

140

120

100

80

60

40

20

0

May-13

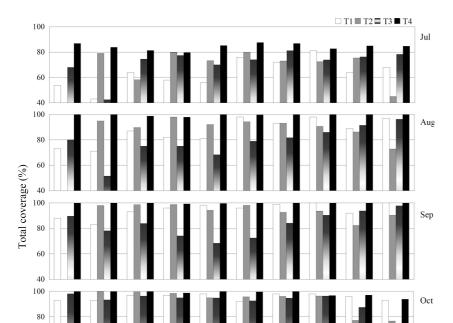
Precipitation (mm)

SED

7, 369-391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.



Printer-friendly Version

Interactive Discussion

Nov-13

Figure 2. Total coverage of different combinations of shrub and herbaceous seeds.

60

40

SED

7, 369-391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Printer-friendly Version

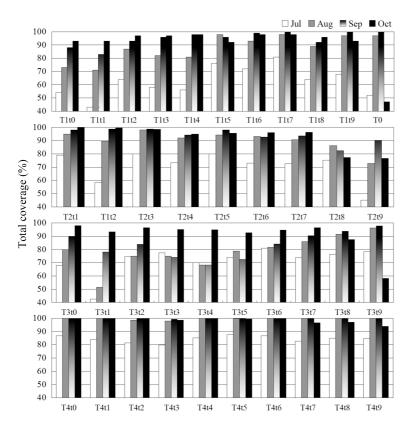


Figure 3. Dynamics of total coverage.

SED

7, 369-391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I

I

I

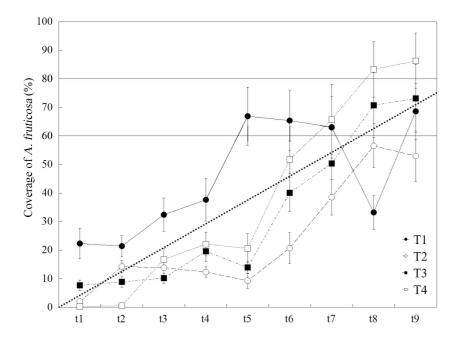
Back Close

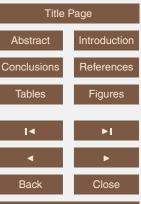
Full Screen / Esc

Printer-friendly Version

Printer-friendly Version

Interactive Discussion




Figure 4. Coverage of A. fruticosa sowed with different herbaceous seeds. Note: each spot with error bar is the mean value of coverage of A. fruticosa during the experimental period. The dotted line indicates a predicted coverage of A. fruticosa under different seeding density, based on the assumption that the coverage is proportional to the amount of seeds sowed.

SED

7, 369-391, 2015

Rapid revegetation by sowing seed mixtures

J. J. Feng et al.

