Skip to main content
Log in

The origin of Datura metel (Solanaceae): genetic and phylogenetic evidence

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Using the analysis of nine isozyme systems and cladistic analysis of 32 morphological characters of the Mexican species of the section Dutra of the genus Datura, evidence was sought on the origin of the cultivated D. metel L. The genetic similarity and the phylogenetic relationship suggest that D. metel is related more closely to D. inoxia Mill. than to the other taxa of the section Dutra based upon the small genetic distance between them. The cladistic analysis revealed two main clades: the long-lived, tuberous rooted perennials (D. inoxia, D. lanosa A.S. Barclay ex Bye, D. metel, and D. wrightii Regel) and the tap-rooted annuals (D. discolor Bernh., D. kymatocarpa A.S. Barclay, D. leichhardtii F.V. Muell. ex Benth. ssp. pruinosa (Greenm.) Barclay ex Hammer (syn.: D. pruinosa Greenm.), D. reburra A.S. Barclay). Datura inoxia is the sister taxon of D. metel next to which is D. wrightii while D. lanosa is the basal taxon of this group. The combination of genetic and cladistic data indicates that D. inoxia is most likely the progenitor of D. metel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An-ming L (1986) Solanaceae in China. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 79–85

    Google Scholar 

  • Ashman TL, Schoen DJ (1994) How long should flowers live? Nature 371:788–791

    Article  CAS  Google Scholar 

  • Ashton GC, Braden AWH (1961) Serum β-globulin polymorphism in mice. Aust J Biol Sci 14:248–254

    CAS  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Baverstock PR, Moritz C (1996) Project design. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates Inc, Sunderland, pp 17–27

    Google Scholar 

  • Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38:459–487

    Article  Google Scholar 

  • Brown AHD, Weir BS (1983) Measuring genetic variability in plant populations. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, part A. Elsevier, Amsterdam, pp 219–239

    Google Scholar 

  • Bye RA, Mata R, Pimentel J (1991) Botany, ethnobotany and chemistry of Datura lanosa (Solanaceae) in Mexico. Ann Inst Biol (UNAM) Serie Bot 61:21–42

    Google Scholar 

  • Carmona-Jiménez ML (2003) Estudio anatómico y morfológico de las semillas de Datura spp. en México. Tesis de Maestría en Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF

  • Cheliak WM, Pitel JA (1984) Techniques for starch gel electrophoresis of enzymes from forest tree species. Petawa Forestry Institute, Canadian Forestry Service Agriculture, Ottawa

    Google Scholar 

  • Colunga-García Marín P, Coello-Coello J, Eguiarte LE, Piñero D (1999) Isozymatic variation and phylogenetic relationships between henequen (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). Am J Bot 86:115–123

    Article  Google Scholar 

  • Conkle MT, Hodgskiss PD, Nunnaly LB, Hunter SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. General Technical Report PSW-64, USDA Forest Service Pacific Southwest Forest and Range Experimental Station, Berkeley, CA

  • Conklin ME, Smith HH (1971) Peroxidase isozymes: a measure of molecular variation in ten herbaceous species of Datura. Am J Bot 58:688–696

    Article  CAS  Google Scholar 

  • Darwin C (1883) The variation of animals and plants under domestication. D Appleton and Co, New York

    Google Scholar 

  • De Candolle A (1852) Prodromus systematis naturalis regni vegetabilis. Masson, Paris

    Google Scholar 

  • Deb DB (1979) Solanaceae in India. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 87–112

    Google Scholar 

  • Dethier M, Demeyer K, Cordier Y (1993) Cultivation of Datura species for scopolamine and hyoscyamine production in Burundi. Acta Hortic 331:39–48

    Google Scholar 

  • DeWolf GP (1956) Notes on cultivated Solanaceae 2 Datura. Baileya 4:12–23

    Google Scholar 

  • Doebley J (1989) Isozymic evidence and the evolution of crop plants. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 165–191

    Google Scholar 

  • Evans WC (1979) Tropane alkaloids of the Solanaceae. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 241–254

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Fildes RA, Harris H (1966) Genetically determined variation of adenylate kinase in man. Nature 209:262–263

    Article  Google Scholar 

  • Fuentes V (1980) Solanaceas de Cuba I Datura L. Rev Jard Bot Nac Cuba 1:61–81

    Google Scholar 

  • Fuentes V, Lima H (1983) Isoenzimas peroxidasa en el género Datura L. III. Rev Jard Bot Nac Cuba 4(2):49–63

    Google Scholar 

  • Gentry JL, D’Arcy WG (1986) Solanaceae of Mesoamerica. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 15–26

    Google Scholar 

  • Haegi L (1976) Taxonomic account of Datura L. (Solanaceae) in Australia with a note on Brugmansia Pers. Aust J Bot 24:415–435

    Article  Google Scholar 

  • Hammer K, Romeike A, Tittel C (1983) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Datura L., section Dutra Bernh., Ceratocaulis Bernh. et Datura. Kulturpflanze 31:13–75

    Article  Google Scholar 

  • Hancock JF (1992) Plant evolution and the origin of crop species. Prentice Hall, NJ

    Google Scholar 

  • Harlan JR (1992) Crops and man. American Society of Agronomy & Crop Science Society of America, Madison

    Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der pflanzen. Birkhäuser Verlag, Basel

    Google Scholar 

  • Hegnauer R (1990) Chemotaxonomie der pflanzen. Birkhäuser Verlag, Basel

    Google Scholar 

  • Hernández-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Syst Evol 226:129–142

    Article  Google Scholar 

  • Jain SK, Borthakur SK (1986) Solanaceae in Indian tradition, folklore, and medicine. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 577–583

    Google Scholar 

  • Jiao M, Luna-Cavazos M, Bye R (2002) Allozyme variation in Mexican species and classification of Datura (Solanaceae). Plant Syst Evol 232:155–166

    Article  CAS  Google Scholar 

  • Leht M, Jaaska V (2002) Cladistic and phenetic of relationships in Vicia subgenus Vicia (Fabaceae) by morphology and isozymes. Plant Syst Evol 232:237–260

    Article  CAS  Google Scholar 

  • Linneaus C (1753) Species Plantarum. Stockholm

  • Lockwood TE (1973) Generic recognition of Brugmansia. Bot Mus Lealf Harv Univ 23:273–284

    Google Scholar 

  • Luna-Cavazos M, Jiao M, Bye R (2000) Phenetic analysis of Datura section Dutra (Solanaceae) in Mexico. Bot J Linn Soc 133:493–507

    Article  Google Scholar 

  • Mace EC, Gebhardt CG, Lester RN (1999) AFLP analysis of genetic relationships in the tribe Datureae (Solanaceae). Theor Appl Genet 99:634–641

    Article  CAS  Google Scholar 

  • McLeod MJ, Guttman SI, Eshbaugh WH, Rayle RE (1983) An electrophoretic study of evolution in Capsicum (Solanaceae). Evol 37:562–574

    Article  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Ohnishi O (1998) Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat and of tatary buckwheat. Econ Bot 52:123–133

    Google Scholar 

  • Ohnishi O, Matsuoka H (1996) Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum species based on morphology, isozymes and cp-DNA variability. Genes Genet Syst 71:383–390

    Article  Google Scholar 

  • Oliver JL, Martinez-Zapater JM (1984) Allozyme variability and phylogenetic relationships in the cultivated potato (Solanum tuberosum) and related species. Plant Syst Evol 148:1–18

    Article  CAS  Google Scholar 

  • Olmstead RG, Palmer JD (1992) A chloroplast DNA phylogeny of the Solanaceae: subfamilial relationships and character evolution. Ann Mo Bot Gard 79:346–360

    Article  Google Scholar 

  • Palomino G, Viveros R, Bye RA (1988) Cytology of a five Mexican species of Datura L. (Solanaceae). Southwest Nat 33:85–90

    Article  Google Scholar 

  • Persson V, Knapp S, Blackmore S (1999) Pollen morphology and the phylogenetic analysis of Datura L. and Brugmansia Pers. In: Nee M, Symon D (eds) Solanaceae IV. Royal Botanic Gardens Kew, Richmond, pp 171–178

    Google Scholar 

  • Potter D, Doyle JJ (1992) Origins of the African yam bean (Sphenostylis stenocarpa, Leguminosae): Evidence from morphology, isozymes, chloroplast DNA, and linguistics. Econ Bot 46:276–292

    CAS  Google Scholar 

  • Poulik MD (1957) Starch electrophoresis in a discontinuous system of buffers. Nature 180:1477

    Article  PubMed  CAS  Google Scholar 

  • Reynolds J, Tampio J (1983) Double flowers—A scientific study. Scientific and Academic Editions, New York

    Google Scholar 

  • Rieseberg LH, Beckstrom-Sternberg SM, Liston A, Arias DM (1991) Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot 16:50–76

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc, numerical taxonomy and multivariate analysis system, version 2.1. Applied Biostatistics, Inc, New York

    Google Scholar 

  • Safford WE (1921) Synopsis of the genus Datura. J Wash Acad Sci 11:173–189

    Google Scholar 

  • Satina S (1959) Segmental interchanges and the species problem. In: Avery AG, Satina S, Rietsema J (eds) Blakeslee: the genus Datura. Ronald Press, New York, pp 220–234

    Google Scholar 

  • Satina S, Avery AG (1959) A review of the taxonomy history of Datura. In: Avery AG, Satina S, Rietsema J (eds) Blakeslee: the genus Datura. Ronald Press, New York, pp 16–47

    Google Scholar 

  • Soltis DE, Soltis PS (eds) (1989) Isozymes in plant biology. Dioscorides Press, Portland

    Google Scholar 

  • Spooner DM, Lara-Cabrera S (2001) Sistemática molecular y evolución de plantas cultivadas. In: Hernández HM, García-Aldrete AN, Álvarez F, Ulloa M (eds) Enfoques contemporáneos para el estudio de la biodiversidad: Instituto de Biología. Universidad Nacional Autónoma de México, México, pp 57–114

    Google Scholar 

  • Stevens PF (1991) Character states, morphological variation, and phylogenetic analysis: a review. Syst Bot 16:553–583. doi:10.2307/2419343

    Article  Google Scholar 

  • Stuber CW, Johnson FM (1977) Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.). Biochem Genet 15:383–394

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Wendel JF, Goodman MM, Smith JSC (1988) Techniques and scoring procedures for starch gel electrophoresis of enzymes from maize (Zea mays L.). Technical Bulletin 286, North Carolina Agricultural Research Service, North Carolina State University, Raleigh, NC

  • Stuessy TS (1990) Plant taxonomy, the systematic evaluation of comparative data. Columbia University Press, New York

    Google Scholar 

  • Swofford DL (1998) PAUP, phylogenetic analysis using parsimony. Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Symon D, Haegi LAR (1991) Datura (Solanaceae) is a New World genus. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens Kew, Richmond, pp 197–210

    Google Scholar 

  • Tétényi P (1987) A chemotaxonomic classification of the Solanaceae. Ann Mo Bot Gard 74:600–608

    Article  Google Scholar 

  • Watrous L, Wheeler Q (1981) The outgroup method of phylogeny reconstruction. Syst Zool 30:1–16

    Article  Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45

    Google Scholar 

  • Zohary D, Hopf M (1994) Domestication of plants in the Old World. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We thank Alfredo Cervantes, Fernando Chiang, Patricia Dávila, Alfonso Delgado, Patricia Escalante, Victor Fuentes, Les Landrum, Gary Nabhan, Juan Nuñez-Farfán, Porfirio Ramírez, David Spooner, Oswaldo Tellez, and John Turrell for their suggestions and helpful reviews during the development of this work. We acknowledge the bibliographic, field, and technical assistance of José Arellano, Jennifer Bain, Francisco Basurto, Bruce Bartholomew, Germán Bojórquez, Lourdes Carmona, Rafael Corral, Carlos Díaz, Francisco Felix, Oscar Ferrera, Raymundo García, Martín Hilerio, Elia Herrera, Ma. Antonieta Isidro, Edelmira Linares, Rigoberto López, Gilberto Márquez, Miguel Ángel Martínez, Myrna Mendoza, Gustavo Morales, Eduardo Palacios, Isaac Reyes, Lourdes Rico, Joel Rodríguez, Victoria Sosa, Richard Spellenberg, Miguel Trejo, and Hugh Wilson. The main electrophoresis works were carried out at the Laboratory of Electrophoresis of Instituto de Biología de la UNAM; special thanks go to Fernando Cervantes and members of his group. Nidia Pérez from the Instituto de Ecología de la UNAM provided initial guidance for electrophoresis techniques. Partial financial support for this work was provided by Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Project 088), International Cooperative Biodiversity Groups (“Bioactive agents from dryland biodiversity of Latin America” grant U01 TW 00316 from the National Institutes of Health, National Science Foundation, and USAID), and Universidad Nacional Autónoma de México. CONACYT provided partial scholarship support to Mario Luna-Cavazos. Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México provided a partial scholarship to Meijun Jiao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna-Cavazos, M., Bye, R. & Jiao, M. The origin of Datura metel (Solanaceae): genetic and phylogenetic evidence. Genet Resour Crop Evol 56, 263–275 (2009). https://doi.org/10.1007/s10722-008-9363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9363-5

Keywords

Navigation