Skip to main content
Log in

Noise Sources of Lean Premixed Flames

  • Original research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The thermoacoustic sound generation mechanisms of lean premixed laminar and turbulent flames are investigated by a two-step approach. First, the conservation equations of a reacting compressible fluid are solved. This solution is used to determine the acoustic source terms of the acoustic perturbation equations (APE). Second, the contributions of the different source terms to the amplitude and phase of the acoustic pressure signal are analyzed by solving the APE in a computational aeroacoustics (CAA) simulation. The results show that it is not sufficient to only consider the unsteady heat release rate fluctuations which occur in the substantial pressure-density relation. The acceleration of density gradients occurring at the flame front is a significant contributor to the overall sound emission. For the investigated laminar and turbulent flames the amplitude and phase of the acoustic pressure signal can only be predicted accurately if both source terms are included in the acoustic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lieuwen, T., Yang, V.: Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Progress in Aeronautics and Astronautics Series, vol. 210. AIAA, Reston (2005)

    Google Scholar 

  2. Bomberg, S., Emmert, T., Polifke, W.: Thermal versus acoustic response of velocity sensitive premixed flames. Proc. Combust. Inst. 35, 3185–3192 (2015)

    Article  Google Scholar 

  3. Hoeijmakers, M., Kornilov, V., Lopez Arteaga, I., de Goey, P., Nijmeijer, H.: Intrinsic instability of flame-acoustic coupling. Combust. Flame 161, 2860–2867 (2014)

    Article  Google Scholar 

  4. Strahle, W.: A review of combustion generated noise. AIAA Paper, 73–1023 (1973)

  5. Bake, F., Richter, C., Mühlbauer, B., Kings, N., Röhle, I., Thiele, F., Noll, B.: The entropy wave generator (ewg): a reference case on entropy noise. J. Sound Vib. 326(3), 574–598 (2009)

    Article  Google Scholar 

  6. Marble, F., Candel, S.: Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55, 225–243 (1977)

    Article  MATH  Google Scholar 

  7. Schlimpert, S., Feldhusen, A., Grimmen, J.H., Roidl, B., Meinke, M., Schröder, W.: Hydrodynamic instability and shear layer effects in turbulent premixed combustion. Phys. Fluids 28(1) (2016)

  8. Schlimpert, S., Hemchandra, S., Meinke, M., Schröder, W.: Hydrodynamic instability and shear layer effect on the response of an acoustically excited laminar premixed flame. Combust. Flame 162(2), 345–367 (2015)

    Article  Google Scholar 

  9. Schlimpert, S., Koh, S.R., Pausch, K., Meinke, M., Schröder, W.: Analysis of combustion noise of a turbulent premixed slot jet flame. Combust. Flame 175(1), 292–306 (2017)

    Article  Google Scholar 

  10. Dowling, A.P., Stow, S.: Acoustic analysis of gas turbine combustors. J. Propul. Power 19, 751–764 (2003)

    Article  Google Scholar 

  11. Duran, I., Moreau, S., Nicoud, F., Livebardon, T., Bouty, E., Poinsot, T.: Combustion noise in modern aero-engines. J. Aerospace Lab 7(5), 1–11 (2014)

    Google Scholar 

  12. Hurle, I.R., Price, R.B., Sugden, T.M., Thomas, A.: Sound emission from open turbulent premixed flames. Proc. R. Soc. London, Ser. A 303, 409–427 (1968)

    Article  Google Scholar 

  13. Poinsot, T.: Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36(1), 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  14. Price, R.B., Hurle, I.R., Sugden, T.M.: Optical studies of the generation of noise in turbulent flames. Symp. (Int.) Combust. 12(1), 1093–1102 (1969)

    Article  Google Scholar 

  15. Rayleigh, L.: The explanation of certain acoustical phenomena. Nature 18, 319–321 (1878)

    Article  Google Scholar 

  16. Thomas, A., Williams, G.T.: Flame noise: sound emission from spark-ignited bubbles of combustible gas. Proc. R. Soc. London, Ser. A 294, 449–466 (1966)

    Article  Google Scholar 

  17. Shivashankara, B., Strahle, W., Handley, J.: Evaluation of combustion noise scaling laws by an optical technique. AIAA J. 13(5), 623–627 (1975)

    Article  Google Scholar 

  18. Haghiri, A., Talei, M., Brear, J., Hawkes, E.: Sound generation by turbulent premixed flames. J. Fluid. Mech. 843, 29–52 (2018)

    Article  MathSciNet  Google Scholar 

  19. Hirsch, C., Wäsle, J., Winkler, A., Sattelmayer, T.: A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31, 1435–1441 (2007)

    Article  Google Scholar 

  20. Kotake, S., Takamoto, K.: Combustion noise: effects of the shape and size of burner nozzle. J. Sound Vib. 112(2), 345–354 (1987)

    Article  Google Scholar 

  21. Kotake, S., Takamoto, K.: Combustion noise: effects of the velocity turbulence of unburned mixture. J. Sound Vib. 139(1), 9–20 (1990)

    Article  Google Scholar 

  22. Rajaram, R., Lieuwen, T.: Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357–385 (2009)

    Article  MATH  Google Scholar 

  23. Swaminathan, N., Xu, G., Dowling, A.P., Balachandran, R.: Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Crighton, D., Dowling, A., Williams, J.F., Heckl, M., Leppington, F.: Modern Methods in Analytical Acoustics. Springer, Berlin (1992)

    Book  Google Scholar 

  25. Ihme, M., Pitsch, H., Bodony, D.: Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32(1), 1545–1553 (2009)

    Article  Google Scholar 

  26. Bui, T.P., Ihme, M., Schröder, W., Pitsch, H.: Analysis of different sound source formulations to simulate combustion generated noise using a hybrid LES/APE-RF method. Int. J. Aeroacoustics 8, 95–124 (2009)

    Article  Google Scholar 

  27. Bui, T.P., Schröder, W., Meinke, M.: Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comp. Fluids 37, 1157–1169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, F., Habisreuther, P., Hettel, M., Bockhorn, H.: Numerical computation of combustion induced noise using compressible les and hybrid CFD/CAA methods. Acta Acust United Ac. 98, 120–134 (2012)

    Article  Google Scholar 

  29. Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H., Paschereit, C.: On prediction of combustion generated noise with the turbulent heat release rate. Acta Acust United Ac. 99(6), 940–951 (2013)

    Article  Google Scholar 

  30. Silva, C.F., Leyko, M., Nicoud, F., Moreau, S.: Assessment of combustion noise in a premixed swirled combustor via large-eddy simulation. Comput. Fluids 78, 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merk, M., Gaudron, R., Silva, C., Gatti, M., Mirat, C., Schuller, T., Polifke, W.: Prediction of combustion noise of an enclosed flame by simultaneous identification of noise source and flame dynamics. Proc. Combust. Inst. 37(4), 5263–5270 (2019)

    Article  Google Scholar 

  32. Nicoud, F., Poinsot, T.: Thermoacoustic instabilities: Should the rayleigh criterion be extended to include entropy changes? Combust. Flame 142(1-2), 153–159 (2005)

    Article  Google Scholar 

  33. Brear, M.J., Nicoud, F., Talei, M., Giauque, A., Hawkes, E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 53–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Talei, M., Brear, M.J., Hawkes, E.R.: A comparative study of sound generation by laminar, combusting and non-combusting jet flows. Theor. Comp. Fluid Dyn. 28(4), 385–408 (2014)

    Article  Google Scholar 

  35. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188, 365–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)

    Article  Google Scholar 

  37. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)

    Article  Google Scholar 

  38. Hartmann, D., Meinke, M., Schröder, W.: A level-set based adaptive-grid method for premixed combustion. Combust. Flame 158(7), 1318–1339 (2011)

    Article  Google Scholar 

  39. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4), 199–228 (1992)

    Article  Google Scholar 

  40. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for cartesian hierarchical grid methods. Comp. Fluids 37, 1103–1125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hartmann, D., Meinke, M., Schröder, W.: The constrained reinitialization equation for level set methods. J. Comput. Phys. 229, 1514–1535 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

    Article  MathSciNet  Google Scholar 

  44. Johansson, S.: High order finite difference operators with the summation by parts property based on DRP schemes. Tech. rep. (2004)

  45. Hu, F., Hussaini, M., Manthey, J.: Low-dissipation and low-dispersion runge-kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Müller, U., Bollig, M., Peters, N.: Approximations for burning velocities and markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108, 349–356 (1997)

    Article  Google Scholar 

  47. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nawroth, H., Paschereit, C.O.: High-speed flow field measurements of turbulent jet flames undergoing shear layer manipulation. AIAA Paper, 2016–1841 (2016)

  50. Geiser, G., Hosseinzadeh, A., Nawroth, H., Zhang, F., Bockhorn, H., Habisreuther, P., Janicka, J., Paschereit, C.O., Schröder, W.: Thermoacoustics of a turbulent premixed flame. AIAA Paper, 2014–2476 (2014)

  51. Ihme, M.: Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49(1), 277–310 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Keller, J.J.: Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33(12), 2280–2287 (1995)

    Article  MATH  Google Scholar 

  53. Strobio Chen, L., Bomberg, S., Polifke, W.: Propagation and generation of acoustic and entropy waves across a moving flame front. Combust. Flame 166, 170–180 (2016)

    Article  Google Scholar 

  54. Ducruix, S., Durox, D., Candel, S.: Theoretical and experimental determinations of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28(1), 765–773 (2000)

    Article  Google Scholar 

  55. Fleifil, M., Annaswamy, A., Ghoneim, Z., Ghoniem, A.: Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106(4), 487–510 (1996)

    Article  Google Scholar 

  56. Schuller, T., Durox, D., Candel, S.: A unified model for the prediction of laminar flame transfer functions: comparisons between conical and v-flame dynamics. Combust. Flame 134(1–2), 21–34 (2003)

    Article  Google Scholar 

  57. Zhang, F., Zirwes, T., Habisreuther, P., Bockhorn, H.: Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170–179 (2017)

    Article  Google Scholar 

  58. Karimi, N., Brear, M.J., Jin, S.H., Monty, J.P.: Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 156(11), 2201–2212 (2009)

    Article  Google Scholar 

  59. Schuller, T., Durox, D., Candel, S.: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135(4), 525–537 (2003)

    Article  Google Scholar 

  60. Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Talei, M., Brear, M.J., Hawkes, E.R.: A parametric study of sound generation by premixed laminar flame annihilation. Combust. Flame 159, 757–769 (2012)

    Article  MATH  Google Scholar 

  62. Pausch, K., Herff, S., Nawroth, H., Paschereit, C., Schröder, W.: Noise sources of a lean-premixed jet flame. AIAA Paper, 2018–4088 (2018)

  63. Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre. Journal of large-scale research facilities 1(A1) (2015)

Download references

Acknowledgments

This study was supported by the DFG funded grants SCHR 309/69, SCHR 309/43, and BO 693/26-2. The authors are grateful for the computing resources provided by the High Performance Computing Center Stuttgart (HLRS) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS) and we acknowledge PRACE for awarding us access to resource JUQUEEN [63] based in Germany at Jülich Supercomputing Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Pausch.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pausch, K., Herff, S., Zhang, F. et al. Noise Sources of Lean Premixed Flames. Flow Turbulence Combust 103, 773–796 (2019). https://doi.org/10.1007/s10494-019-00032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00032-0

Keywords

Navigation