Skip to main content
Log in

On the Influence of Polynomial De-aliasing on Subgrid Scale Models

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this work we investigate the interplay of polynomial de-aliasing and sub-grid scale models for large eddy simulations based on discontinuous Galerkin discretizations. It is known that stability is a major concern when simulating underresolved turbulent flows with high order nodal collocation type discretizations. By changing the interpolatory character of the nodal collocation type discretization to a projection based discretization by increasing the number of quadrature points (polynomial de-aliasing), one is able to remove the aliasing induced stability problems. We focus on this effect and on the consequence for large eddy simulations with explicit subgrid scale models. Often, subgrid scale models have to achieve two possibly conflicting tasks in a single simulation: firstly stabilizing the numerics and secondly modeling the physical effect of the missing scales. Within a discontinuous Galerkin approach, it is possible to use either a fast (but potentially aliasing afflicted) nodal collocation discretization or a projection-based (but computationally costly) variant in combination with an explicit subgrid scale model. We use this framework to investigate the effect on the appropriate model parameter of a standard Smagorinsky subgrid scale model and of a Variational Multiscale Smagorinsky formulation. For this we first consider the 3-D viscous Taylor-Green vortex example to investigate the impact on the stability of the method and second the turbulent flow past a circular cylinder to investigate and compare the accuracy of the results. We show that the aliasing instabilities of collocative discretizations severely limit the choice of the model constant, in particular for high order schemes, while for de-aliased DG schemes, the closure model parameters can be chosen independently from the numerical scheme. For the cylinder flow, we also find that for the same model settings, the projection-based results are in better agreement with the reference DNS than those of the collocative scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.: An interior penalty finite element method with discontinuous elements. PhD thesis, The University of Chicago (1979)

  2. Bassi, F., Rebay, S.: A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 40, 197–207 (2002)

    Article  MATH  Google Scholar 

  4. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid an viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) Proceedings of 2nd European conference on turbomachinery, fluid and thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen (1997)

    Google Scholar 

  5. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1–4), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, A., Bolemann, Th., Flad, D., Frank, H., Gassner, G., Hindenlang, F., Munz, C.-D.: High order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. submitted to International Journal of Numerical Methods in Fluids (2013)

  8. Blackburn, H.M., Schmidt, S.: Large eddy simulation of flow past a circular cylinder. In: Proceedings of 14th Australasian Fluid Mechanics Conference (2001)

  9. Blackburn, H.M., Schmidt, S.: Spectral element filtering techniques for large eddy simulation with dynamic estimation. J. Comput. Phys. 186(2), 610–629 (2003)

    Article  MATH  Google Scholar 

  10. Boussinesq, J.: Essai sur la theorie des eaux couranteś. Mémoires présentés par divers savants à l’Académie des Sciences 23, 1–680 (1877)

    MATH  Google Scholar 

  11. Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U.: Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411–452 (1983)

    Article  MATH  Google Scholar 

  12. Brachet, M.E.: Direct simulation of three-dimensional turbulence in the Taylor–Green vortex. Fluid Dyn. Res. 8(1-4), 1–8 (1991)

    Article  Google Scholar 

  13. Breuer, M.: Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Methods Fluids 28(9), 1281–1302 (1998)

    Article  MATH  Google Scholar 

  14. Carpenter, M., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. Technical Report NASA TM 109111 (1994)

  15. Carton de Wiart, C., Hillewaert, K.: DNS and ILES of transitional flows around a SD7003 using a high order discontinuous Galerkin method. In: Seventh International Conference on Computational Fluid Dynamics (ICCFD7) (2012)

  16. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection p 1-discontinuous Galerkin method for scalar conservation laws. M2AN 25, 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Collis, S.: Monitoring unresolved scales in multiscale turbulence modeling. Phys. Fluids 13(6) (2001)

  21. Collis, S.S.: Discontinuous Galerkin methods for turbulence simulation. In: Proceedings of the 2002 Center for Turbulence Research Summer Program, pp. 155–167 (2002)

  22. Collis, S.S.: The DG/VMS method for unified turbulence simulation. In: 32nd AIAA Fluid Dynamics Conference and Exhibit (2002)

  23. Carton de Wiart, C., Hillewaert, K., Bricteux, L., Winckelmans, G.: Implicit les of free and wall-bounded turbulent flows based on the discontinuous galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78 (2015)

  24. Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185–207 (2006)

    Article  MATH  Google Scholar 

  25. Dröge, M.: Cartesian grid methods for turbulent flow simulation in complex geometries, Dissertation, University of Groningen (2007)

  26. Drosson, M., Hillewaert, K.: On the stability of the symmetric interior penalty method for the Spalart-Allmaras turbulence model. J. Comput. Appl. Math. 246, 122–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fauconnier, D.: Development of a Dynamic Finite Difference Method for Large-Eddy Simulation. Dissertation, Ghent University, Ghent, Belgium (2008)

  28. Flad, D., Beck, A., Munz, C.-D.: Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method. Journal of Computational Physics (2015)

  29. Fröhlich, J., Rodi, W., Kessler, Ph., Parpais, S., Bertoglio, J.P., Laurence, D.: Large eddy simulation of flow around circular cylinders on structured and unstructured grids. In: Ernst Heinrich Hirschel, editor, Numerical Flow Simulation I, volume 66 of Notes on Numerical Fluid Mechanics (NNFM), pp. 319–338. Springer, Berlin (1998)

    Google Scholar 

  30. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)

  31. Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Scientific Computing 33(5), 2560–2579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gassner, G., Lorcher̈, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27(3-4), 221–237 (2013)

    Article  Google Scholar 

  34. Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: Method formulation. Int. J. Num. Anal. Model. 3(1), 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Verlag (2008)

  36. Hickel, S.: Implicit Turbulence Modeling for Large-Eddy Simulation. Dissertation, Technische Universitat Munchen, Munich, Germany (2008)

  37. Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

    Article  MathSciNet  Google Scholar 

  38. Hughes, Th., Mazzei, L., Oberai, A., Wray, A.: The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids 13(2) (2001)

  39. Hughes, Th., Oberai, A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13(6) (2001)

  40. Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191, 249–264 (2003)

    Article  MATH  Google Scholar 

  41. Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Spacetime discontinuous Galerkin method for the compressible Navier-Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer (2009)

  44. Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Re D=3900. Phys. Fluids 12, 403–417 (2000)

    Article  MATH  Google Scholar 

  45. Kravchenko, A.G., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131(2), 310–322 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lehmkuhl, O., Rodrguez, I., Borrell, R., Oliva, A.: Low-frequency unsteadiness in the vortex formation region of a circular cylinder, vol. 25, pp. – (2013)

  47. Lomtev, I., Quillen, C.W., Karniadakis, G.: Spectral/hp methods for viscous compressible flows on unstructured 2d meshes. J. Comp. Phys 144, 325–357 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lorcher̈, F., Gassner, G., Munz, C.-D.: An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comput. Phys. 227(11), 5649–5670 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lysenko, D.A., Ertesvg, I.S., Rian, K.E.: Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the openfoam toolbox. Flow Turbul. Combust. 89(4), 491–518 (2012)

    Article  Google Scholar 

  50. Ma, X., Karamanos, G.-S., Karniadakis, G.E.: Dynamics and low-dimensionality of a turbulent near wake. Journal of Fluid Mechanics 410, 29–65 (2000). 5

    Article  MathSciNet  MATH  Google Scholar 

  51. Malm, J., Schlatter, P., Fischer, P.F., Henningson, D.S.: Stabilization of the spectral element method in convection dominated flows by recovery of skew-symmetry. J. Sci. Comput. 57, 254–277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Meyer, M., Hickel, S., Adams, N.A.: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int. J. Heat Fluid Flow 31(3), 368–377 (2010)

    Article  Google Scholar 

  53. Meyers, J., Sagaut, P.: On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 569, 387–319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Moussaed, C., Wornom, S., Salvetti, M.V., Koobus, B., Dervieux, A.: Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows. Acta Mech. 225(12), 3309–3323 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nitsche, J.A.: Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  56. Norberg, C.: An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994)

    Article  Google Scholar 

  57. Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20(6), 441–453 (1996)

    Article  Google Scholar 

  58. Orszag, S.A.: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28(6), 1074–1074 (1971)

    Article  Google Scholar 

  59. Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 39(7), 1083–1094 (2010)

    Article  MATH  Google Scholar 

  60. Parnaudeau, Ph., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20, 85–101 (2008)

    Article  MATH  Google Scholar 

  61. Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  63. Schlatter, P.: Large-eddy simulation of transition and turbulence in wall-bounded shear flow, ETH Zürich. PhD thesis (2005)

  64. Sengupta, K., Mashayek, F., Jacobs, G.B.: Large-eddy simulation using a discontinuous Galerkin spectral element method. In: 45th AIAA Aerospace Sciences Meeting and Exhibit (2007)

  65. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  66. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (1999)

  67. Uranga, A., Persson, P.-O., Drela, M., Peraire, J.: Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 87(1-5), 232–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Vreman, A.W.: The filtering analog of the variational multiscale method in large-eddy simulation. Phys. Fluids 15(8) (2003)

  69. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order cfd methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea D. Beck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, A.D., Flad, D.G., Tonhäuser, C. et al. On the Influence of Polynomial De-aliasing on Subgrid Scale Models. Flow Turbulence Combust 97, 475–511 (2016). https://doi.org/10.1007/s10494-016-9704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9704-y

Keywords

Navigation