Skip to main content
Log in

Key principles of constructing probabilistic statistical ionosphere models for the radiowave propagation problems

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

It is demonstrated that it is required to create probabilistic statistical models of the ionosphere for calculating radio propagation in a wide frequency range. This, in fact, presents a new type of ionospheric modeling. These models are classified into pure statistical and deterministic-stochastic. We describe the key principles of building such models, present some examples of their construction, and discuss some difficulties arising from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al’pert, Ya.L., Ginzburg, V.L., and Feinberg, E.L., Rasprostranenie radiovoln (Propagation of Radio Waves), Moscow: Gostekhizdat, 1953.

    Google Scholar 

  • Bekker, S.Z., Kozlov, S.I., and Lyakhov, A.N., Modeling the ionosphere for calculating the long-distance HF, LF, and VLF propagation for the applied problems, in Tr. 16-oi nauchno-prakticheskoi konf. “Aktual’nye problemy zashchity i bezopasnosti” (Proc. 16th Scientific and Practical Conference “Problems of Safety and Protection”), St. Petersburg, 2013, pp. 172–176.

    Google Scholar 

  • Bekker, S.Z., Kozlov, S.I., and Lyakhov, A.N., Modeling the ionosphere for calculations of radio propagation in the applied problems, Vopr. Oboron. Tekh. Ser. 16, 2013b, nos. 3–4, pp. 85–88.

    Google Scholar 

  • Ching, B.K. and Chiu, Y.I., A phenomenological model of global ionospheric electron density in the E-, F1- and F2-regions, J. Atmos. Terr. Phys., 1973, vol. 35, no. 9, pp. 1615–1630.

    Article  Google Scholar 

  • COSPAR International Reference Atmosphere 1965 (CIRA 1965), Amsterdam: North-Holland., 1965.

  • Egoshin, A.A., Ermak, V.M., Zetzer, Yu.I., Kozlov, S.I., Kudryavtsev, V.P., Lyakhov, A.N., Poklad, Yu.V., and Yakimenko, E.N., Influence of meteorological and wave processes on the lower ionosphere during solar minimum conditions according to the data on midlatitude VLF-LF propagation, Izv., Phys. Solid Earth, 2012, no. 3, pp. 275–286.

    Google Scholar 

  • Eliseeva, I.I. and Yuzbashev, M.M., Obshchaya teoriya statistiki (General Statistical Theory), Moscow: Finansy i Statistika, 1999.

    Google Scholar 

  • Fergusson, J.A., A review of the ionospheric model for the long wave prediction capability, Naval Command, Control and Ocean Surveillance Center. Technical Document 2393, 1992.

    Google Scholar 

  • Gmurman, V.E., Teoriya veroyatnostei i matematicheskaya statistika (Probability Theory and Mathematical Statistics), Moscow: Vysshaya Shkola, 1977.

    Google Scholar 

  • GOST (State Standard) R-25645.15-94: Earth’s Lower Ionosphere. Global Model of Electron Concentration and Effective Electron Collision Frequency for Forecasting Low Frequency Radio Fields, 1994.

  • Guillas, S. and Rougier, J., Maute, A., Richmond, A.D., and Linkletter, C.D., Bayesian calibration of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM), Geosci. Model Dev., 2009, no. 2, pp. 137–144.

    Google Scholar 

  • Hedin, A.E., A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSISs-83, J. Geophys. Res., 1983, vol. 88, no. A12, pp. 10170–10188.

    Article  Google Scholar 

  • Jacchia, L.G., Thermospheric temperature, density and composition: New models, Spec. Rep. Smithsonian Astrophys. Observ., 1977, no. 375, pp. 1–106.

    Google Scholar 

  • Kozlov, S.I., Bikineev, B.F., and Novikovich, V.M., Statistical model of the key parameters of undisturbed ionosphere for calculating long-distance HF propagation, in Tez. dokl. 4 Mezhved. seminara po modelirovaniyu ionosfery (Abstracts 4th Int. Workshop on Ionospheric Modeling), Tomsk, 1978, pp. 38–40.

    Google Scholar 

  • Kozlov, S.I., Vlaskov, V.A., and Smirnova, N.V., Ion kinetics, minor neutral and excited species in D-region with increased ionization: I. Pproblem statement and general scheme of the processes, Kosm. Issl., 1982, vol. 20, no. 6, pp. 881–891.

    Google Scholar 

  • Kozlov, S.I. and Smirnova, N.V., Methods and means for generating artificial formations in the near-Earth environment and estimating the characteristics of the emerging disturbances, Parts 1 and 2, Kosm. Issl., 1992, vol. 30, no. 4, pp. 495–523; no. 5, pp. 629–683.

    Google Scholar 

  • Kozlov, S.I. and Sorokin, V.M., Fundamental and applied problems of powerful radiowaves impact on the ionosphere, Elektromagn. Volny Elektron. Sist., 2011, vol. 16, no. 7, pp. 4–9.

    Google Scholar 

  • Krinberg, I.A., Vyborov, V.I., Koshelev, V.V., Popov, V.V., and Sutyrin, N.A., Adaptivnaya model’ ionosfery (Adaptive Model of the Ionosphere), Moscow: Nauka, 1986.

    Google Scholar 

  • Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45, London: The Institution of Electrical Engineers, 2000.

    Book  Google Scholar 

  • Lyakhov, A.N., Kozlov, S.I., and Bekker, S.Z., The concept of the probabilistic-statistical model of the lower ionosphere, Int. Living with a Star Workshop, Russia, Irkutsk, June 24–28, 2013, Irkutsk: ISZF SO RAN, 2013, p. 41.

    Google Scholar 

  • Nasledov, A.D., Matematicheskie metody psikhologicheskogo issledovaniya (Mathematical Methods of Psychological Testing), St. Petersburg: Rech’, 2004.

    Google Scholar 

  • Nicolis, G. and Prigogine, I., Exploring Complexity: An Introduction, New York: Freeman, 1989.

    Google Scholar 

  • Orlov, A.B. and Sazeeva, N.N., Regular variations in the electron density profile in the midlatitude dayside lower ionosphere, Geomagn. Aeron., 1974, vol. 14, no. 5, 1974.

    Google Scholar 

  • Prigogine, I., Nonequilibrium Statistical Mechanics, New York: Wiley, 1962.

    Google Scholar 

  • Rawer, K., Bilitza, D., and Ramakrishnan, S., Goals and status of the International Reference Ionosphere, Rev. Geophys., 1978, vol. 16, pp. 177–181.

    Article  Google Scholar 

  • Sidorenko, E.V., Metody matematicheskoi obrabotki v psikhologii (Methods of Mathematical Processing in Psychology), St. Petersburg: Rech’, 2001.

    Google Scholar 

  • Waters, J.W., Froidevaux, L., Harwood, R.S., et al., The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite, IEEE Trans. Geosci. Remote Sens., 2006, vol. 44, no. 5, pp. 1075–1092.

    Article  Google Scholar 

  • Zetzer, Yu.I., Lyakhov, A.N., Perunov, Yu.M., and Kozlov, S.I., Geophysical impacts on the control, communication, and navigation systems, in Tr. 2-oi Vseros. nauch. konf. “Problemy voenno-prikladnoi geofiziki i kontrolya sostoyaniya prirodnoi sredy” (Proc. 2nd All-Russian Scientific Conf. “Problems of Applied Military Geophysics and Environmental Control”), St. Petersburg: Voenno-Kosmich. Akad. im. A.F. Mozhaiskogo, 2012, vol. 2, p. 336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kozlov.

Additional information

Original Russian Text © S.I. Kozlov, A.N. Lyakhov, S.Z. Bekker, 2014, published in Geomagnetizm i Aeronomiya, 2014, Vol. 54, No. 6, pp. 767–779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, S.I., Lyakhov, A.N. & Bekker, S.Z. Key principles of constructing probabilistic statistical ionosphere models for the radiowave propagation problems. Geomagn. Aeron. 54, 750–762 (2014). https://doi.org/10.1134/S0016793214060127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793214060127

Keywords

Navigation