Skip to main content
Log in

Critical analysis of active methods of ozone layer recovery

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A critical analysis is given for various methods for recovery of the ozone layer of the Earth: the emission of alkane gases, the destruction of freons by laser IR radiation and with microwave discharge, exposure to laser UV radiation and electric discharge in the atmosphere, the use of solar radiation, laser infrared radiation, and gamma rays, and the creation of an artificial formation at high altitudes that shields the solar radiation dissociating ozone. The optimal methods are discussed in terms of their effectiveness, economic costs, and environmental consequences. These include the use of gamma rays sources, electric discharge in the atmosphere, and microwave breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adushkin, V.V. and Kudryavtsev, V.P., Estimating the global flux of methane into the atmosphere and its seasonal variations, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 2, pp. 128–136.

    Article  Google Scholar 

  • Askar’yan, G.A., Batanov, G.M., Barkhudarov, A.E., et al., Electron attachment explodes Freon molecules: New possibilities for removing Freons from the atmosphere, JETP Lett., 1992, vol. 55, no. 9, 515–520.

    Google Scholar 

  • Askar’yan, G.A., Batanov, G.M., Kossyi, I.A., and Kostinskii, A.Yu., Consequences of UHF-discharges in the stratosphere, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 3, pp. 566–570.

    Google Scholar 

  • Belikov, Yu.E. and Nikolayshvili, S.Sh., Ozone holes: A reconsideration, Zemlya Vselennaya, 2015, no. 2, pp. 27–39.

    Google Scholar 

  • Belikov, Y. and Nikolayshvili, S., The role of the dipole interaction of molecules with charged particles in the polar stratosphere, J. Earth Sci. Eng., 2016, no. 6, pp. 115–149.

    Google Scholar 

  • Borisov, N.D., Kozlov, S.I., and Smirnova, N.V., Change in the chemical composition of the middle atmosphere at a multiple pulse UHF discharge in the air, Kosm. Issled., 1993, vol. 31, no. 2, pp. 63–74.

    Google Scholar 

  • Boyarchuk, K.A., Karelin, A.V., and Shirokov, R.V., Bazovaya model' kinetiki ionizirovannoi atmosfery (The Base Model of Kinetics of the Ionized Atmosphere), Moscow: IPG VNII EM, 2006.

    Google Scholar 

  • Cicerone, R.J., Elliott, S., and Turco, R.P., Reduced Antarctic ozone depletions in a model with hydrocarbon injections, Science, 1991, vol. 254, pp. 1191–1194.

    Article  Google Scholar 

  • Egawa, T., USSR Inventor’s Certificate no. 57-8041, Byull. Izobret., 1982, no. 3, p. 202.

    Google Scholar 

  • Eremin, E.N., Elementy gazovoi elektrokhimii (Elements of Gas Electrochemistry), Moscow: MGU, 1968.

    Google Scholar 

  • Favorskii, O.N., Khabarov, O.S., Starik, A.M., et al., Documents for the parliamentary hearings in the Russian State Duma on November 14, 1995.

    Google Scholar 

  • Gritsinin, S.I., Kossyi, I.A., Misakyan, M.A., and Silakov, V.P., Conversion of chlorofluorocarbons in gaseous mixtures under the action of microwave discharges, Plasma Phys. Rep., 1997, vol. 23, no. 3, pp. 242–249.

    Google Scholar 

  • Gurevich, A.V., The ionized layer in a gas (in the atmosphere), Usp. Fiz. Nauk, 1980, vol. 132, no. 4, pp. 685–690.

    Article  Google Scholar 

  • Gurevich, A.V., Litvak, A.G., Vikharev, A.L., et al., Artificially ionized region as a source of ozone in the stratosphere, Phys.-Usp., 2000, vol. 43, no. 11, pp. 1103–1124.

    Article  Google Scholar 

  • Karol’, I.L., Kiselev, A.A., and Frol’kis, V.A., It is real to “mend” the “ozone holes”?, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 1995, vol. 31, no. 1, pp. 120–122.

    Google Scholar 

  • Kossyi, I.A., Kostinsky, A.Yu., Matveev, A.A., et al., Microwave discharge action on the ozone layer, Comments Plasma Phys. Controlled Fusion, 1991, vol. 14, no. 2, pp. 73–87.

    Google Scholar 

  • Kozlov, S.I. and Smirnova, N.V., Impact upon the stratospheric ozone of a formation originating at the Space Shuttle launching, Geomagn. Aeron. (Engl. Transl.), 1996, vol. 36, no. 1, pp. 141–144.

    Google Scholar 

  • Kozlov, S.I., Vlaskov, V.A., and Smirnova, N.V., Specialpurpose aerodynamic model for studying the artificial modification of the middle atmosphere and lower ionosphere, Kosm. Issled., 1988, vol. 26, no. 5, pp. 738–745.

    Google Scholar 

  • Kozlov, S.I., Lyakhov, A.N., and Bekker, S.Z., Key principles of constructing probabilistic statistical ionosphere models for the radiowave propagation problems, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 6, pp. 750–762.

    Article  Google Scholar 

  • Larin, I.K., Khimicheskaya fizika ozonovogo sloya (Chemical Physics of the Ozone Layer), Moscow: Geos, 2013.

    Google Scholar 

  • Larin, V.F. and Rumyantsev, S.A., Kinetics of the formation of ozone and nitrogen oxides with a airborne pulse UHF-discharge, Pis’ma v Zh. Tech. Fiz., 1989, vol. 15, no. 6, pp. 87–90.

    Google Scholar 

  • Larin V.F. and Rumyantsev, S.A., Development of radiophysical methods of active influence on the high-latitude ionosphere, in Sbornik KNTs RAN (Transactions of the Kola Science Center of the Russian Academy of Sciences), Apatity: KNTs RAN, 1993, p. 25.

    Google Scholar 

  • Levin, V.A., Starik, A.M., and Taranov, O.V., Modeling the dynamics of refractive index variation associated with the absorption of radiation of wavelength λ = 10.6 μm by water vapor, Fluid Dyn., 1992, vol. 27, no. 3, pp. 399–406.

    Article  Google Scholar 

  • Lu, Q.B., New Theories and Predictions on the Ozone Hole and Climate Change, New Jersey: World Scientific, 2015.

    Book  Google Scholar 

  • Smirnova, N.V. and Kozlov, S.I., Polar ozone “holes” and midlatitude anomalies: Experimental data and formation mechanisms, Prikl. Fiz., 1999, no. 6, pp. 40–60.

    Google Scholar 

  • Starik, A.M., Favorskii, O.N., Khabarov, O.S., and Amelin, B.N., How to recover the Earth’s ozone layer, Vestn. Ross. Akad. Nauk, 1993, vol. 63, no. 12, pp. 1082–1090.

    Google Scholar 

  • Stix, T.N., Processing the Earth’s atmosphere, in ISPP-7, “Piero Caldirola”: Controlled Active Global Experiments, Sindoni, E. and Wong, A.Y., Eds., Bologna: SIF, 1991, pp. 281–288.

    Google Scholar 

  • Vikharev, A.L., Ivanov, O.A., and Litvak, A.G., Nonequilibrium plasma produced by microwave nanosecond radiation: Parameters, kinetics, and practical applications, IEEE Trans. Plasma Sci., 1996, vol. 24, pp. 460–477.

    Article  Google Scholar 

  • Zuev, V.E. and Komarov, V.S., Statisticheskie modeli temperatury i gazovykh komponent atmosfery (Statistical Models of Temperature and Gas Components of the Atmosphere), Leningrad: Gidrometeoizdat, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Bekker.

Additional information

Original Russian Text © S.Z. Bekker, A.P. Doronin, S.I. Kozlov, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 5, pp. 676–682.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekker, S.Z., Doronin, A.P. & Kozlov, S.I. Critical analysis of active methods of ozone layer recovery. Geomagn. Aeron. 57, 630–636 (2017). https://doi.org/10.1134/S0016793217050024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217050024

Navigation