Skip to main content
Log in

Cocrystallization of isomorphic components in solutions and crystal zoning: An example of the (Ba,Pb)(NO3)2 series

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The phase equilibrium and growth of mixed (Ba,Pb)(NO3)2 crystals in aqueous solutions were investigated. The microcrystallization method was adapted to systems with isomorphic components, where crystal composition deviates from the thermodynamic equilibrium even at a low supercooling. The solid phase is characterized by continuous miscibility of the components within the analyzed ranges of temperature and solution composition. The diagram is characterized by substantial nonlinearity of the solubility isotherms and nonuniformity of the solid isocomposite location. Quasiequilibrium paths change their slope depending on solution enrichment in Ba(NO3)2 and depletion in Pb(NO3)2. The area of curvature of quasiequilibrium paths is coordinated with the area of the changing isotherm slope, i.e., the area of “remarkable” points, where the behavior of the system changes drastically. Examples of theoretical zoning of a crystal approximated to a sphere were calculated for paths at a temperature decreasing from 50 to 15°C. The content of the Ba component decreases toward the periphery with the consecutive overgrowing of zones. Each zone corresponds to one gram of (Ba,Pb)(NO3)2. Crystals grown from different initial solutions consist of different numbers of zones owing to the nonlinearity of solubility isotherms. Specific features of mixed crystal formation should be taken into account in genetic interpretation of natural minerals of mixed composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Anosov, M. I. Ozerova, and Yu. A. Fialkov, Principles of Physicochemical Analysis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. V. D. Franke and A. E. Glikin, “Equilibria of Mixed Crystals with Solutions and Their Analysis,” in Crystal Genesis and Mineralogy (St. Petersburg State Univ., St. Petersburg, 2001), pp. 108–109 [in Russian].

    Google Scholar 

  3. V. D. Franke and A. E. Glikin, “Zoning in Mixed (Ba,Pb)(NO3)2 Crystals by Equilibrium Precipitation from Aqueous Solution,” in Proceedings of 5th International Symposium on Mineralogical Museums (St. Petersburg, 2005a), pp. 300–301 [in Russian].

  4. V. D. Franke, A. E. Glikin, “Equilibrium Crystallization in (Ba,Pb)(NO3)2-H2O System with Isomorphism and “Remarkable” Points in Phase Diagram,” in Proceedings of XV Russian Conference on Experimental Mineralogy (Syktyvkar, 2005b), pp. 435–437 [in Russian].

  5. A. E. Glikin, “Physicochemical Aspects of the Instability of Metasomatic Crystal Genesis,” Geokhimiya 33(9), 1211–1322 (1995a).

    Google Scholar 

  6. A. E. Glikin, “To the Theory of the Formation of Isomorphous Mixed Crystals,” Zap. Vseross. Mineral. O-va 124(5), 125–134 (1995b).

    Google Scholar 

  7. A. E. Glikin, “On Equilibrium Supercooled Solutions in the Light of the Origin of Isomorphically Mixed Crystals,” Zap. Vseross. Mineral. O-va 125(5), 103–111 (1996).

    Google Scholar 

  8. A. E. Glikin, Polymineralic Metasomatic Crystal Genesis (Zh. Neva, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  9. A. E. Glikin and M. Yu. Sinai, “Experimental Analysis of the Origin of Monocrystal Pseudomorphs,” Zap. Vseross. Mineral. O-va 112(6), 742–748 (1983).

    Google Scholar 

  10. A. E. Glikin, S. I. Kovalev, R. B. Rudneva, et al., “Phenomena and Mechanisms of Mixed Crystal Formation in Solutions: I. General Concept on the Example of the System KHC8H4O4-RbHC8H4O4-H2O,” J. Cryst. Growth 255, 150–162 (2003).

    Article  Google Scholar 

  11. A. E. Glikin, O. A. Leont’eva, and M. Yu. Sinai, “Mechanisms of Exchange of Isomorphous Components between Crystal and Solution and Defects in Secondary Crystals,” Zh. Strukt. Khim, No. 5, 79–84 (1994a).

  12. A. E. Glikin, O. A. Leont’eva, M. Yu. Sinai, et al., “Exchange of Isomorphic Components between Crystal and Solution,” Vest. St. Peterburg. Gos. Univ., Ser. Geol., No. 11, 111–112 (1994b).

  13. P. Groth, Chemishe Kristallographie (Leipzig, 1906), Vol. 1.

  14. G. Crundwell, B. Cowans, J. Hopkins, et al., “Vegard’s Rule Revisited in BaxPb1−x (NO3)2 by NMR and XRD,” J. Solid State Chem., No. 145, 327–335 (1999).

    Google Scholar 

  15. I. A. Kasatkin, Candidate’s Dissertation in Geology and Mineralogy (St. Petersburg, 1993).

  16. L. Yu. Kryuchkova, Candidate’s Dissertation in Geology and Mineralogy (St. Petersburg, 2005).

  17. L. Yu. Kryuchkova, A. E. Glikin, A. E. Voloshin, and S. I. Kovalev, “Kinetic and Morphological Events of the Growth and Isomorphic Replacement of Mixed Crystals in Solutions with Reference to (Co,Ni)(NH4)2(SO4)2 · 6H2O Series,” Zap. Vseross. Mineral. O-va, 131(3), 62–77 (2002).

    Google Scholar 

  18. K. Maiwa, M. Plomp, W. J. P. von Enckevort, and P. Bennerma, “AFM Observation of Barium Nitrate {111} and {100} Faces: Spiral Growth and Two-Dimensional Nucleation Growth,” J. Cryst. Growth 255, 150–162 (1998).

    Google Scholar 

  19. Modern Crystallography (Nauka, Moscow, 1980), Vol. 3 [in Russian].

  20. T. G. Petrov, E. B. Treivus, Yu. O. Punin, and A. P. Kasatkin, Crystal Growing from Solutions (Nedra, Leningrad, 1983) [in Russian].

    Google Scholar 

  21. P. I. Protsenko, O. N. Razumovskaya, and N. A. Brykova, Reference Book on the Solubility of Nitrite and Nitrate Systems (Khimiya, Leningrad, 1971) [in Russian].

    Google Scholar 

  22. Reference Book on Solubility (Nauka, Moscow, 1970), Vol. 1–3 [in Russian].

  23. L. N. Sal’nikova and E. B. Treivus, “Studies of Pb Nitrate Crystallization from Aqueous Solution,” in Crystallography and Crystal Chemistry, Ed. by V. A. Frank-Kamenetsky (Leningr. State Univ., Leningrad, 1973), Vol. 2, pp. 82–85 [in Russian].

    Google Scholar 

  24. V. B. Tatarsky, Crystallooptics and Immersion Analysis of Minerals (Nedra, Moscow, 1965) [in Russian].

    Google Scholar 

  25. E. B. Treivus, “On the Isometric Diagrams of Ternary Systems Containing a Binary Solid Solution,” Vest. St. Petersburg. Gos. Univ., 7(15), 14–23 (2000).

    Google Scholar 

  26. A. Tsuchiyama, M. Kitamura, I. Sunagawa, “Distribution of Elements in Growth of (Ba,Pb)(NO3)2 Crystals from the Aqueous Solution,” J. Cryst. Growth. 55, 510–516 (1981).

    Article  Google Scholar 

  27. A. E. Voloshin, A. E. Glikin, S. I. Kovalev, and E. B. Rudneva, “Morphological Effects on Liquid-Phase Epitaxy (with Reference to KHPht-RbHPht-H2O System),” Kristallografiya 48(6), 1112–1123 (2003) [Crystallogr. Rep. 48 (6), 1064–1075 (2003)].

    Google Scholar 

  28. A. E. Voloshin, S. I. Kovalev, E. D. Rundeva, and A. E. Glikin, “Phenomena and Mechanism of Mixed Crystal Formation in Solutions. II. Mechanism of Interface Processes,” J. Crystal Growth 261, 105 (2003).

    Article  Google Scholar 

  29. C. F. Woensdregt and A. E. Glikin, “Ex Situ Scanning Force Microscopic Observation of Growth and Dissolution Phenomena on {010} Surfaces of Potassium Hydrogen Phthalate Crystals (KAP) Caused by Isomorphic Exchange Reactions,” J. Cryst. Growth 283(3–4), 523–532 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Franke.

Additional information

Original Russian Text © V.D. Franke, A.E. Glikin, L.Yu. Kryuchkova, E.V. Tabuns, 2006, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2006, No. 6, pp. 88–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, V.D., Glikin, A.E., Kryuchkova, L.Y. et al. Cocrystallization of isomorphic components in solutions and crystal zoning: An example of the (Ba,Pb)(NO3)2 series. Geol. Ore Deposits 49, 641–647 (2007). https://doi.org/10.1134/S1075701507070239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701507070239

Keywords

Navigation