Skip to main content
Log in

Microsatellite-based analysis of genetic diversity in 91 commercial Brassica oleracea L. cultivars belonging to six varietal groups

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Brassica oleracea L. includes various types of important vegetables that show extremely diverse phenotypes. To elucidate the genetic diversity and relationships among commercial cultivars derived by different companies throughout the world, we characterized the diversity and genetic structure of 91 commercial B. oleracea cultivars belonging to six varietal groups, including cabbage, broccoli, cauliflower, kohlrabi, kale and kai-lan. We used 69 polymorphic microsatellite markers showing a total of 359 alleles with an average number of 5.20 alleles per locus. Polymorphism information content (PIC) values ranged from 0.06 to 0.73, with an average of 0.40. Among the six varietal groups, kohlrabi cultivars exhibited the highest heterozygosity level, whereas kale cultivars showed the lowest. Based on genetic similarity values, an UPGMA clustering dendrogram and a two-dimensional scale diagram (PCoA) were generated to analyze genetic diversity. The cultivars were clearly separated into six different clusters with a tendency to cluster into varietal groups. Model-based structure analysis revealed six genetic groups, in which cabbage cultivars were divided into two subgroups that were differentiated by their head shape, whereas cauliflower and kai-lan cultivars clustered together into a single group. Furthermore, we identified 18 SSR markers showing 27 unique alleles specific to only one cultivar that can be used to discriminate 22 cultivars from the others. Our phylogenetic and population structure analysis presents new insights into the genetic structure and relationships among 91 B. oleracea cultivars and provides valuable information for breeding of B. oleracea species. In addition, we demonstrate the utility of SSR markers as a powerful tool for discriminating between the cultivars. The SSR markers described herein will also be helpful for Distinctness, Uniformity and Stability (DUS) test of new cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  PubMed  CAS  Google Scholar 

  • Belaj A, Satovic Z, Ismaili H, Panajoti D, Rallo L, Trujillo I (2003) RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytica 130:387–395

    Article  CAS  Google Scholar 

  • Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144

    Article  PubMed  CAS  Google Scholar 

  • Burgess B, Mountford H, Hopkins CJ, Love C, Ling AE, Spangenberg GC, Edwards D, Batley J (2006) Identification and characterization of simple sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences. Mol Ecol Notes 6:1191–1194

    Article  CAS  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  PubMed  CAS  Google Scholar 

  • Christensen S, Bothmer R, Poulsen G, Maggioni L, Phillip M, Andersen BA, Jørgensen RB (2010) AFLP analysis of genetic diversity in leafy kale (Brassica oleracea L. convar. acephala (DC.) Alef.) landraces, cultivars and wild populations in Europe. Genet Resour Crop Evol 58:657–666

    Article  Google Scholar 

  • Chuang H-Y, Tsao S-J, Lin J-N, Chen K-S, Liou T-D, Chung M-C, Yang Y-W (2004) Genetic diversity andd relationship of non-heading Chinese cabbage in Taiwan. Bot. Bull. Acad. Sin 45:331–337

    Google Scholar 

  • Diederichsen A (2001) Cruciferae: Brassica. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops. Springer, Berlin, pp 1435–1446

  • Fahey J, Talalay P (1995) The role of crucifers in cancer chemoprotection. In: Gustine DL, Florens HE (eds) Phytochemicals and health. American Society of Plant Physiologists, Rockvill, pp 87–93

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Formisano G, Roig C, Esteras C, Ercolano MR, Nuez F, Monforte AJ, Picó MB (2012) Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genet Resour Crop Evol 59(6):1169–1184

    Article  Google Scholar 

  • Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. In: Hecht MK (ed) Evolutionary biology, vol 27. Plenum Press, New York, pp 51–94

    Chapter  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2005) Analysis of Genetic Diversity in the Brassica napus L. Gene Pool Using SSR Markers. Genet Resour Crop Evol 53:793–802

    Article  Google Scholar 

  • Jain S, Jain RK, McCouch SR (2004) Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet 109:965–977

    Article  PubMed  CAS  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends in Ecol Evol 11:424–429

    Article  CAS  Google Scholar 

  • Kang J, Fang Z, Wang X, Xu D, Liu Y, Yang L, Zhuang M, Zhang Y (2011) Genetic diversity and relationships among cabbage (Brassica oleracea var. capitata) landraces in China revealed by AFLP markers. Afr J Biotechnol 32:5940

    Google Scholar 

  • Kianian SF, Quiros CF (1992) Trait inheritance, fertility and genomic relationships of some n = 9 Brassica species. Genet Resour Crop Evol 39:165–175

    Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Louarn S, Torp AM, Holme IB, Andersen SB, Jensen BD (2007) Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet Resour Crop Evol 54:1717–1725

    Article  CAS  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Applied Genet 108:1103–1112

    Article  CAS  Google Scholar 

  • Lu X, Liu L, Gong Y, Zhao L, Song X, Zhu X (2009) Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci Hortic 122:645–648

    Article  CAS  Google Scholar 

  • Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc 82:665–674

    Article  Google Scholar 

  • Marquez-Lema A, Velasco L, Perez-Vich B (2010) Transferability, amplification quality and genome specifity of microsatellites in Brassica carinata and related species. J Appl Genet 51:123–131

    Article  PubMed  CAS  Google Scholar 

  • Moxon ER, Wills C (1999) DNA microsatellites: agents of evolution? Sci Am 280:94–99

    Article  PubMed  CAS  Google Scholar 

  • Nienhuis J, Sills G (1992) The potential of hybrid varieties in self-pollinated vegetables. In: Dattee Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding. Springer, Berlin, pp 387–396

    Chapter  Google Scholar 

  • Paterson AH, Lan T-h, Amasino R, Osborn TC, Quiros C (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biology 2:1011.1011–1011.1014

    Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102:689–694

    Article  CAS  Google Scholar 

  • Powel W, Machray GC, Povan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Purugganan MD, Boyles AL, Suddith JI (2000) Variation and Selection at the CAULIFLOWER Floral Homeotic Gene Accompanying the Evolution of Domesticated Brassica oleracea. Genetics 155:855–862

    PubMed  CAS  Google Scholar 

  • Quiros CF, Farnham MW (2011) The genetics of Brassica oleracea. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer Science+Business Media, Berlin, pp 261–289

    Google Scholar 

  • Riaz A, Li G, Quresh Z, Swati MS, Quiroz CF (2001) Genetic diversity of oilseed rape inbred lines based on SRAP and its relation to hybrid perfomance. Plant Breeding 120:411–415

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-PC, numerical taxonomy system for the PC, ExeterSoftware, Ver. 2.1. Applied Biostatistics Inc, Setauket

    Google Scholar 

  • Santos JBd, Nienhuis J, Skroch P, Tivang J, Slocum MK (1994) Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet 87:909–915

    Article  Google Scholar 

  • Shengwu H, Ovesna J, Kucera L, Vyvadilova M (2003) Evaluation of genetic diversity of Brassica napus germplasm from China and Europe assessed by RAPD markers. Plant Soil Environ 49:106–113

    Google Scholar 

  • Smith LB, King GJ (2000) The distribution of BoCAL-a alleles in Brassica oleracea ia consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed 6:603–613

    Article  Google Scholar 

  • Smith OS, Smith JSC, Bowen SL, Tenborg RA, Wall SJ (1990) Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet 80:833–840

    Article  Google Scholar 

  • Song KM, Osborn TC, William PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600

    Article  CAS  Google Scholar 

  • Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506

    Article  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Chen ZJ (2005) Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity 94(3):295–304

    Article  PubMed  CAS  Google Scholar 

  • Tonguc M, Griffiths PD (2004) Genetic relationship of Brassica vegetables determined using database derived simple sequence repeats. Euphytica 137:193–201

    Article  CAS  Google Scholar 

  • van Hintum TJ, van de Wiel CC, Visser DL, van Treuren R, Vosman B (2007) The distribution of genetic diversity in a Brassica oleracea gene bank collection related to the effects on diversity of regeneration, as measured with AFLPs. Theor Appl Genet 114:777–786

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Zhou ZQ, Yang GP, Xu CG, Liu KD, Maroof MAS (1996) Molecular markers heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet 93:1218–1224

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Technology Development Program (No. 309008-05) for Agriculture and Forestry, Ministry of Food, Agriculture, Forestry and Fisheries, Republic of Korea. Nur Kholilatul Izzah is supported by the Islamic Development Bank (IDB), Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izzah, N.K., Lee, J., Perumal, S. et al. Microsatellite-based analysis of genetic diversity in 91 commercial Brassica oleracea L. cultivars belonging to six varietal groups. Genet Resour Crop Evol 60, 1967–1986 (2013). https://doi.org/10.1007/s10722-013-9966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-9966-3

Keywords

Navigation