Skip to main content

Advertisement

Log in

Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation through surface velocity boundary conditions

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

Mantle convection is governed by coupled, non-linear conservation equations for mass, momentum and energy. In the forward problem the equations relate an initial to a final state of the convective system, while one can pose an inverse problem to restore earlier structure from a final state. Although the ability to restore earlier mantle structure is essential in geodynamics, allowing one to test uncertain parameters of mantle convection models against constraints derived from the geologic record, the convergence properties of the inverse problem are not well understood. Here we show that knowledge of the surface velocity field over the restoration period is crucial for the convergence rate of the restoration problem. With simple mantle convection models, and assuming for reference a given initial and final state, we explore the restoration problem in cases where knowledge of the surface velocity field over the restoration period is available relative to those where it is not. We find convergence of the inverse problem for time periods of \(\sim \)1/3 of a transit time and corresponding to about 50 million years in the Earth’s mantle, if the surface velocity field is known, while it diverges otherwise. For the Earth’s mantle the history of the surface velocity field is known for time periods of \(\sim \)1/2 transit times from reconstructions of past plate motion. Our results suggest that this constraint is of key importance in any attempt to restore past mantle structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bunge, H.-P., Davies, J.H.: Tomographic images of a mantle circulation model. Geophys. Res. Lett. 28(1), 77–80 (2001)

    Article  Google Scholar 

  • Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003)

    Article  Google Scholar 

  • Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379(6564), 436–438 (1996)

    Article  Google Scholar 

  • Burstedde, C., Stadler, G., Alisic, L., Wilcox, L.C., Tan, E., Gurnis, M., Ghattas, O.: Large-scale adaptive mantle convection simulation. Geophys. J. Int. 192(3), 889–906 (2013)

    Article  Google Scholar 

  • Busse, F., Richards, M., Lenardic, A.: A simple model of high Prandtl and high Rayleigh number convection bounded by thin low-viscosity layers. Geophys. J. Int. 164(1), 160–167 (2006)

    Article  Google Scholar 

  • Christensen, U.R., Yuen, D.A.: Layered convection induced by phase transitions. J. Geophys. Res.: Solid Earth (1978–2012), 90(B12):10291–10300 (1985)

  • Cloetingh, S., Ziegler, P., Bogaard, P., Andriessen, P., Artemieva, I., Bada, G., Van Balen, R., Beekman, F., Ben-Avraham, Z., Brun, J.-P., et al.: Topo-Europe: the geoscience of coupled deep Earth-surface processes. Glob. Planet. Change 58(1), 1–118 (2007)

    Article  Google Scholar 

  • Davies, G.F.: Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Berlin (1996)

  • Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: I. theory. Phys. Earth Planet. Interiors 157(1), 86–104 (2006a)

    Article  MATH  Google Scholar 

  • Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: II. applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Interiors 157(1), 105–123 (2006b)

    Article  MATH  Google Scholar 

  • Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J., Lhuillier, F.: An introduction to data assimilation and predictability in geomagnetism. Space Sci. Rev. 155(1–4), 247–291 (2010)

    Article  Google Scholar 

  • Giles, M.B., Pierce, N.A.: Adjoint equations in CFD: duality, boundary conditions and solution behaviour. In: AIAA, paper A97–1850 (1997)

  • Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems. SIAM J. Sci. Comput., submitted (2013)

  • Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics (2002)

  • Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13(49–52), 28 (1902)

    Google Scholar 

  • Hager, B.H., O’Connell, R.J.: Kinematic models of large-scale flow in the Earth’s mantle. J. Geophys. Res. 84(B3), 1031–1048 (1979)

    Article  Google Scholar 

  • Hager, B.H., O’Connell, R.J.: A simple global model of plate dynamics and mantle convection. J. Geophys. Res.: Solid Earth (1978–2012), 86(B6):4843–4867 (1981)

  • Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Interiors 145(1–4), 99–114 (2004)

    Article  Google Scholar 

  • Jarvis, G.T., Mckenzie, D.P.: Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96(03), 515–583 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Kelley, C.T.: Iterative Methods for Optimization, vol. 18. SIAM (1999)

  • Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, vol. 120. Springer, Berlin (2011)

  • Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and Quasilinear Parabolic Equations [in russian] (1967)

  • Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, vol. 76. Gordon and Breach, New York (1969)

  • Lenardic, A., Richards, M., Busse, F.: Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res.: Solid Earth (1978–2012), 111(B7), B07404 (2006). doi:10.1029/2005JB003639

  • Liu, L., Gurnis, M.: Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res. 113(B8), B08405 (2008). doi:10.1029/2008JB005594

  • Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, vol. 84. Springer, Berlin (2012)

  • McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062), 1136–1139 (2005)

    Article  Google Scholar 

  • Mitrovica, J., Forte, A.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225(1), 177–189 (2004)

    Article  Google Scholar 

  • Ricard, Y., Richards, M., Lithgow-Bertelloni, C., Le Stunff, Y.: A geodynamic model of mantle density heterogeneity. J. Geophys. Res.: Solid Earth (1978–2012), 98(B12):21895–21909 (1993)

  • Richards, M.A., Engebretson, D.C.: Large-scale mantle convection and the history of subduction. Nature 355(6359), 437–440 (1992)

    Article  Google Scholar 

  • Richards, M.A., Yang, W.-S., Baumgardner, J.R., Bunge, H.-P.: Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. 2(8), 1026 (2001). doi:10.1029/2000GC000115

  • Ritsema, J., McNamara, A.K., Bull, A.L.: Tomographic filtering of geodynamic models: impications for model interpretation and large-scale mantle structure. J. Geophys. Res.: Solid Earth (1978–2012), 112(B1) B01303 (2007). doi:10.1029/2006J B004566

  • Schuberth, B., Bunge, H.-P., Ritsema, J.: Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 10(5):Q05W03 (2009a)

  • Schuberth, B., Bunge, H.-P., Steinle-Neumann, G., Moder, C., Oeser, J.: Thermal versus elastic heterogeneity in high-resolution mantle circulation models with pyrolite composition: high plume excess temperatures in the lowermost mantle. Geochem. Geophys. Geosyst. 10(1), Q01W01 (2009b). doi:10.1029/2008GC002235

  • Serrin, J.: Mathematical principles of classical fluid mechanics. In: Fluid Dynamics I/Strömungsmechanik I, pp. 125–263. Springer, Berlin (1959)

  • Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., et al.: Global continental and ocean basin reconstructions since 200ma. Earth-Sci. Rev. 113(3), 212–270 (2012)

    Article  Google Scholar 

  • Spasojevic, S., Liu, L., Gurnis, M.: Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem. Geophys. Geosyst. 10(5), Q05W02 (2009). doi:10.1029/2008GC002345

  • Tackley, P.J.: Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res. 101(B2), 3311–3332 (1996)

    Article  Google Scholar 

  • Tackley, P.J.: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci. Rev. 110(1), 1–25 (2012)

    Article  Google Scholar 

  • Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation. i: theory. Q. J. R. Meteorol. Soc. 113(478), 1311–1328 (1987)

    Article  Google Scholar 

  • Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8), 1259–1266 (1984)

    Article  Google Scholar 

  • Tromp, J., Tape, C., Liu, Q.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160(1), 195–216 (2005)

    Article  Google Scholar 

  • Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1996)

Download references

Acknowledgments

The work of the first author is supported by a Statoil research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmyla Vynnytska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vynnytska, L., Bunge, HP. Restoring past mantle convection structure through fluid dynamic inverse theory: regularisation through surface velocity boundary conditions. Int J Geomath 6, 83–100 (2015). https://doi.org/10.1007/s13137-014-0060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-014-0060-6

Keywords

JEL Classification

Navigation