Skip to main content

Advertisement

Log in

Historical Land Use Explains Current Distribution of Calcareous Grassland Species

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

In this study we analyzed if characteristic calcareous grassland species persist in forest habitats after land use change. Furthermore, we investigated whether the current distribution of such species is related to historical land use of the mid-19th century. Current distributions of nine calcareous grassland species were recorded in a region of Upper Franconia, Germany. Historical (up to 1850) and current land-use data were analyzed using historical maps and aerial photographs. To study the effects of historical land use in current species distributions, we used Generalized Estimating Equations (GEE) and ANOVA, accounting for spatial autocorrelation. Variance partitioning was applied to separate the influence of historical versus current land use. On average 26% of the recorded grassland species occurrences are located in sub-optimal forest habitats. Grassland populations are likely to persist in forest for at least 50 years. Even though current land use explains a higher proportion of the variation in species distribution than historical land use alone, model fit could be significantly improved (P < 0.001) considering the historical component. We conclude that consideration of historical land use is essential to understand the current grassland species distributions and may be of general importance for perennial species of temperate grasslands. In addition, historical legacy has far-reaching implications for conservation biology in terms of realistic assessments of species threat status in present landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aavik T, Jogar U, Liira J, Tulva I, Zobel M (2008) Plant diversity in a calcareous wooded meadow − The significance of management continuity. J Veg Sci 19:475–484

    Article  Google Scholar 

  • Bellemare J, Motzkin G, Foster DR (2002) Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. J Biogeogr 29:1401–1420

    Article  Google Scholar 

  • Bender O, Boehmer HJ, Jens D, Schumacher KP (2005) Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landscape Ecol 20:149–163

    Article  Google Scholar 

  • Böhmer H J, Bender O (2000) Die Entwicklung der Wacholderheiden auf der nördlichen Frankenalb. In Becker H (ed) Beiträge zur Landeskunde Oberfrankens. Festschrift zum 65. Geburtstag von Bezirkstagspräsident Edgar Sitzmann. Selbstverlag Fachbereich Geographie an der Universität Bamberg, Bamberg, pp 169–189

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bossuyt B, Hermy M (2001) Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24:225–238

    Article  Google Scholar 

  • Brys R, Jacquemyn H, Endels P, De Blust G, Hermy M (2005) Effect of habitat deterioration on population dynamics and extinction risks in a previously common perennial. Conservation Biol 19:1633–1643

    Article  Google Scholar 

  • Carey VJ (2006) BR gee: Generalized Estimation Equation solver. R package version 4.13–11. Ported to R by Thomas Lumley (versions 3.13, 4.4, version 4.13). Available at: http://cran.r-project.org/web/packages/gee/index.html

  • Carl G, Kühn I (2007) Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Modelling 207:59–170

    Article  Google Scholar 

  • Chýlová T, Münzbergová Z (2008) Past land use co-determines the present distribution of dry grassland plant species. Preslia 80:183–198

    Google Scholar 

  • Cousins SAO (2001) Plant species occurrences in a rural hemiboreal landscape: effects of remnant habitats, site history, topography and soil. Ecography 24:461–469

    Article  Google Scholar 

  • Cousins SAO, Eriksson O (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landscape Ecol 17:517–529

    Article  Google Scholar 

  • Cousins SAO, Ohlson H, Eriksson O (2007) Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landscape Ecol 22:723–730

    Article  Google Scholar 

  • Dupoeuy JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984

    Article  Google Scholar 

  • Dzwonko Z, Loster S (2007) A functional analysis of vegetation dynamics in abandoned and restored limestone grasslands. J Veg Sci 18:203–212

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Goltze Verlag, Göttingen

    Google Scholar 

  • Eriksson O (1996) Regional dynamics of plants: A review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258

    Article  Google Scholar 

  • Eriksson O, Ehrlén J (2001) Landscape fragmentation and the viability of plant populations. In Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell, Oxford, pp 157–175

    Google Scholar 

  • Eriksson A, Eriksson O, Berglund H (1995) Species abundance patterns of plants in Swedish seminatural pastures. Ecography 18:310–317

    Article  Google Scholar 

  • Foster DR (2000) From bobolinks to bears: interjecting geographical history into ecological studies, environmental interpretation, and conservation planning. J Biogeogr 27:27–30

    Article  Google Scholar 

  • Foster DR (2002) Thoreau’s country: a historical-ecological perspective on conservation in the New England landscape. J Biogeogr 29:1537–1555

    Article  Google Scholar 

  • Garcia D, Zamora R (2003) Persistence, multiple demographic strategies and conservation in long-lived Mediterranean plants. J Veg Sci 14:921–926

    Article  Google Scholar 

  • Garcia D, Zamora R, Hodar JA, Gomez JM (1999) Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in the Mediterranean mountains. Biol Conservation 87:215–220

    Article  Google Scholar 

  • Gatterer K, Nezadal W (eds) (2003) Flora des Regnitzgebietes. IHW-Verlag, Eching

    Google Scholar 

  • Gibson CWD, Brown VK (1991) The nature and rate of development of calcareous grassland in Southern Britain. Biol Conservation 58:297–316

    Article  Google Scholar 

  • Hanski I (2005) The shrinking world: Ecological consequences of habitat loss. International Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conservation Biol 16:666–673

    Article  Google Scholar 

  • Helm A, Hanski L, Patel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    PubMed  Google Scholar 

  • Herben T, Münzbergová Z, Mildén M, Ehrlén J, Cousins SAO, Eriksson O (2006) Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. J Ecol 94:131–143

    Article  Google Scholar 

  • Honnay O, Hermy M, Coppin P (1999) Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for conservation and reforestation. Biol Conservation 87:73–84

    Article  Google Scholar 

  • Honnay O, Coart E, Butaye J, Adriaens D, Van Glabeke S, Roldan-Ruiz I (2006) Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biol Conservation 127:411–419

    Article  Google Scholar 

  • Honnay O, Adriaens D, Coart E, Jacquemyn H, Roldan-Ruiz I (2007) Genetic diversity within and between remnant populations of the endangered calcareous grassland plant Globularia bisnagarica L. Conservation Genet 8:293–303

    Article  Google Scholar 

  • Jump AS, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol 160:349–358

    Article  Google Scholar 

  • Kiviniemi K, Eriksson O (2002) Size-related deterioration of semi-natural grassland fragments in Sweden. Diversity Distrib 8:21–29

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe Vegetationsk 38:1–334

    Google Scholar 

  • Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–358

    Article  Google Scholar 

  • Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn-und Blütenpflanzen Deutschlands. Schriftenreihe Vegetationsk 29:299–444

    Google Scholar 

  • Laudensack A (1994) Vegetationskundliche Untersuchungen von Wacholderstandorten. Naturschutzforschung in Franken I. Naturschutzzentrum Wasserschloss, Mitwitz

    Google Scholar 

  • Leach MK, Givnish TJ (1996) Ecological determinants of species loss in remnant prairies. Science 273:1555–1558

    Article  CAS  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation – trouble or new paradigm. Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Lindborg R, Cousins SAO, Eriksson O (2005) Plant species response to land use change – Campanula rotundifolia, Primula veris and Rhinanthus minor. Ecography 28:29–36

    Article  Google Scholar 

  • Lunt ID, Spooner PG (2005) Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32:1859–1873

    Article  Google Scholar 

  • Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Amer Statist 54:17–24

    Article  Google Scholar 

  • Mildén M, Münzbergová Z, Herben T, Ehrlén J (2005) Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape. Ecol Modelling 199:464–475

    Article  Google Scholar 

  • Mildén M, Cousins SAO, Eriksson O (2007) The distribution of four grassland plant species in relation to landscape history in a Swedish rural area. Ann Bot Fenn 44:416–426

    Google Scholar 

  • Molisch H (1929) Die Lebensdauer der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Motzkin G, Foster DR (2002) Grasslands, heathlands and shrublands in costal New England: historical interpretations and approaches to conservation. J Biogeogr 29:1569–1590

    Article  Google Scholar 

  • Oates MR (1995) Butterfly conservation within the management of grassland habitats. In Pullin AS (ed) Ecology and conservation of butterflies, Chapman and Hall, London, pp 98–112

    Google Scholar 

  • Oberdorfer E (1978) Süddeutsche Pflanzengesellschaften, Teil 2. Gustav Fischer Verlag, Stuttgart, New York

    Google Scholar 

  • Pärtel M, Mändla R, Zobel M (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landscape Ecol 14:187–196

    Article  Google Scholar 

  • Pigott CD (1968) Biological flora of the British Isles. Cirsium acaulon (L.) Scop. J Ecol 56:597–612

    Article  Google Scholar 

  • Pluess AR, Stöcklin J (2004) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conservation Genet 5:145–156

    Article  CAS  Google Scholar 

  • Poschlod P, Jackel A (1993) The dynamics of the generative diaspore bank of calcareous grassland plants. 1. Seasonal dynamics of diaspore rain and diaspore bank in two calcareous grassland sites of the Suebian-Alb. Flora 188:49–71

    Google Scholar 

  • Poschlod P, WallisDeVries M F (2002) The historical and socioeconomic perspective of calcareous grasslands – lessons from the distant and recent past. Biol Conservation 104:361–376

    Article  Google Scholar 

  • Poschlod P, Kiefer S, Tränkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–91

    Article  Google Scholar 

  • Pykälä J, Luoto M, Heikkinen RK, Kontula T (2005) Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic Appl Ecol 6:25–33

    Article  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org

  • Ross KA, Fox BJ, Fox MD (2002) Changes to plant species richness in forest fragments: fragment age, disturbance and fire history may be as important as area. J Biogeogr 29:749–765

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity – Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Saunders DA, Smith GT, Ingram JA, Forrester RI (2003) Changes in a remnant of salmon gum Eucalyptus salmonophloia and York gum E. loxophleba woodland, 1978 to 1997. Implications for woodland conservation in the wheat-sheep regions of Australia. Biol Conservation 110:245–256

    Article  Google Scholar 

  • Schweingruber F, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landscape Res 79:195–415

    Google Scholar 

  • Ssymank A (1994) Neue Anforderungen im europäischen Naturschutz. Das Schutzgebietssystem Natura 2000 und die “FFH Richtlinie” der EU. Natur Landschaft 69:395–406

    Google Scholar 

  • Sutherland WJ, Hill DA (eds) (1995) Managing habitats for conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Svenning J-C, Baktoft KH, Balslev H (2009) Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark. Pl Ecol 201:221–234

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Van Dijk G (1991) The status of semi-natural grasslands in Europe. In Goriup PD, Batten LA, Norton JA (eds) The conservation of lowland dry grassland birds in Europe. JNCC, Newsbury

    Google Scholar 

  • Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conservation 104:315–318

    Article  Google Scholar 

  • Watkins C (1993) Ecological effects of afforestation. CAB International, Oxford

    Google Scholar 

  • Weisel H (1971) Die Bewaldung der nördlichen Frankenalb. Selbstverlag der Fränkischen Geographischen Gesellschaft, Erlangen

    Google Scholar 

  • Willems JH (2001) Problems, approaches, and results in restoration of Dutch calcareous grassland during the last 30 years. Restoration Ecol 9:147–154

    Article  Google Scholar 

  • Williams NSG, Morgan JW, McCarthy MA, McDonnell MJ (2006) Local extinction of grassland plants: the landscape matrix is more important than patch attributes. Ecology 87:3000–3006

    Article  PubMed  Google Scholar 

  • Yan J (2004) Geepack: Generalized estimating equation package. R package version 0.2–10. Available at: http://cran.r-project.org/web/packages/geepack/index.html

Download references

Acknowledgements

The present study was financially supported by the research funding programme “LOEWE- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts. We thank the government of Upper Franconia (Oberfranken) for the permission to access the nature conservation areas for field work as well as Dr. Burkhard Neuwirth from the University of Bonn (Department of Geography) to conduct dendrochronological analysis. We are grateful to Ingolf Kühn for valuable comments on the results as well as Gudrun Carl for assistance with the GEE code. All conducted experiments comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Heubes.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Electronic Supplementary Material 1

Spatial distribution of nine characteristic calcareous grassland species in a segment of Upper Franconia, Germany: aAnthyllis vulneraria, bCentaurea scabiosa, cCirsium acaule, dDianthus carthusianorum, eJuniperus communis, fOnonis repens, gSanguisorba minor, hScabiosa columbaria, iThymus pulegioides (DOC 820 kb)

Electronic Supplementary Material 2

Regression coefficients derived from generalized estimating equations (GEE). Calculation is based on a 70 × 70 m grid. The response is given by the presence/absence of calcareous grassland species while current (2005) and historical (1850) land use categories serve as predictors (binary coded). The first row of each species (2005) shows results of current land use categories, while the second row (1850) relates to historical land use categories. Positive signs (+) indicate species abundance on the respective land use categories, considering current land use. Negative signs (−) indicate species absence. Significance levels show the strength of the relation. The lower the significance level (* – P < 0.05, ** – P < 0.01, *** – P < 0.001), the higher is the probability of finding a species in the corresponding land use type. Considering the results of 1850, species occurrence in relation to historical land use types are displayed (DOC 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heubes, J., Retzer, V., Schmidtlein, S. et al. Historical Land Use Explains Current Distribution of Calcareous Grassland Species. Folia Geobot 46, 1–16 (2011). https://doi.org/10.1007/s12224-010-9090-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-010-9090-5

Keywords

Navigation