Skip to main content
Log in

Thermal conductivity of partially ionized hydrogen

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of ionizing collisions on thermal conductivity λ is studied. A formal expression is obtained for λ with additional terms considering the presence of ionizing collisions in the gas. Calculations performed at p=1 atm and a temperature range of 10,000–25,000 °K show that the effect of ionizing collisions on translational heat capacity is not great. On the other hand, the presence of such collisions in the gas leads to a retardation of diffusion processes, which in turn leads to a significant reduction in the chemical component of the coefficient λ, with this reduction being strongly dependent on the choice of number of excited atomic levels realized in the gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. Ya. Gerasimov, “Transfer phenomena in a partially ionized gas with consideration of the ionization reaction,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 (1974).

  2. G. Ludwig and M. Heil, “Boundary layer theory with dissociation and ionization,” in: Problems in Mechanics [Russian translation], 4th ed., IL, Moscow (1963).

    Google Scholar 

  3. L. Monchick, K. S. Yun, and E. A. Mason, “Formal kinetic theory of transport phenomena in polyatomic gas mixtures,” J. Chem. Phys.,39, No. 3 (1963).

  4. C. Muckenfuss and C. F. Curtiss, “Thermal conductivity of multicomponent gas mixtures,” J. Chem. Phys.,29, No. 6 (1958).

  5. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena [in Russian], Fizmatgiz, Moscow (1966).

    Google Scholar 

  6. F. Burhorn and R. Wienecke, “Plasmazusammenstzung, Plasmadichte, Enthalpie und Spezifische Warme von Wasserstoff und Wasser bei 1, 3, 10 und 30 atm im Temperaturbereich Zwischen 1000 und 30,000 °K,” Z. Phys. Chem.,215, Nos. 5/6 (1960).

  7. V. A. Belov, “Viscosity of partially ionized hydrogen,” Teplofiz. Vys. Temp.,5, No. 1 (1967).

  8. M. Yamamoto, “Spectroscopic investigation of hydrogen plasma produced by an impulsive discharge,” J. Phys. Soc. Jpn.,14, No. 12 (1959).

  9. L. P. Kudrin, “An equation of state for partially ionized hydrogen,” Zh. Éksp. Teor. Ftz.,40, No. 4 (1961).

  10. R. S. Devoto, “Transport coefficients of partially ionized hydrogen,” J. Plasma Phys.,2, Part 4 (1968).

  11. T. Kihara, “On the coefficients of irreversible processes in a highly ionized gas,” J. Phys. Soc. Jpn.,14, No. 4 (1959).

  12. V. M. Dubner, “Electron-hydrogen atom collision integrals,” Teplofiz. Vys. Temp.,2, No. 4 (1964).

  13. U. Plantikow and S. Steinberger, “Elektrische und thermische Leitfahigkeit von Wasserstoff bis 27,000 °K,” Z. Phys.,231, No. 2.

  14. R. S. Devoto, “Simplified expressions for the transport properties of ionized monatomic gases,” Phys. Fluids,10, No. 10 (1967).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 98–103, January–February, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.Y. Thermal conductivity of partially ionized hydrogen. Fluid Dyn 13, 73–77 (1978). https://doi.org/10.1007/BF01094462

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01094462

Keywords

Navigation