Skip to main content
Log in

Experimental and Numerical Study of the Scalar Turbulent/Non-Turbulent Interface Layer in a Jet Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Based on two large-eddy simulations (LES) of a non-reacting turbulent round jet with a nozzle based Reynolds number of 8,610 with the same configuration as the one that has recently been investigated experimentally (Gampert et al., 2012; J Fluid Mech, 2012; J Fluid Mech 724:337, 2013), we examine the scalar turbulent/non-turbulent (T/NT) interface layer in the mixture fraction field of the jet flow between ten and thirty nozzle diameters downstream. To this end, the LES—one with a coarse grid and one with a fine grid—are in a first step validated against the experimental data using the axial decay of the mean velocity and the mean mixture fraction as well as based on radial self-similar profiles of mean and root mean square values of these two quantities. Then, probability density functions (pdf) of the mixture fraction at various axial and radial positions are compared and the quality of the LES is discussed. In general, the LES results are consistent with the experimental data. However, in the flow region where the imprint of the T/NT interface layer is dominant in the mixture fraction pdf, discrepancies are observed. In a next step, statistics of the T/NT interface layer are studied, where a satisfactory agreement for the pdf of the location of the interface layer from the higher resolved LES with the experimental data is observed, while the one with the coarse grid exhibits considerable deviations. Finally, the mixture fraction profile across the interface is investigated where the same trend as for the pdf of the location is present. In particular, it is found that the sharp interface that is present in experimental studies (Gampert et al., J Fluid Mech, 2013; Westerweel et al., J Fluid Mech 631:199, 2009) is less distinct in the LES results and rather diffused in radial direction outside of the T/NT interface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gampert, M., Schaefer, P., Narayanaswamy, V., Peters, N.: Gradient trajectory analysis in a jet flow for turbulent combustion modelling. J. Turbul. (2012). doi:10.1080/14685248.2012.747688

    Google Scholar 

  2. Gampert, M., Narayanaswamy, V., Schaefer, P., Peters, N.: Superlayer contributions to the mixture fraction Pdf in a turbulent round jet flow. J. Fluid Mech. (2013, in press)

  3. Gampert, M., Schaefer, P., Peters, N.: Experimental investigation of dissipation element statistics in scalar fields of a jet flow. J. Fluid Mech. 724, 337–366 (2013)

    Article  Google Scholar 

  4. Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230 (2009)

    Article  MATH  Google Scholar 

  5. Bisset, D.K., Hunt, J.C.R., Rogers, M.M.: The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383–410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Philip, J., Marusic, I.: Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24(5), 055108 (2012)

    Article  Google Scholar 

  7. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics. MIT Press (1975)

  8. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press (1956)

  9. Townsend, A.A.: Local isotropy in the turbulent wake of a cylinder. Austral. J. Sci. Res. A1, 161–174 (1948)

    Google Scholar 

  10. Townsend, A.A.: The fully developed turbulent wake of a circular cylinder. Austral. J. Sci. Res. A2, 451–468 (1949)

    Google Scholar 

  11. Corrsin, S., Kistler, A.L.: Free-Stream Boundaries of Turbulent Flows, vol. 1244. NACA Report (1955)

  12. Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967)

    Article  Google Scholar 

  13. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)

    Article  Google Scholar 

  14. Dimotakis, P.E., Miake-Lye, R.C., Papantoniou, D.A.: Structure and dynamics of round turbulent jets. Phys. Fluids 26, 3185–3192 (1983)

    Article  Google Scholar 

  15. Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992)

    Article  Google Scholar 

  16. Cannon, S., Champagne, E., Glezer, A.: Observations of large-scale structures in wakes behind axisymmetric bodies. Exp. Fluids 14, 447–450 (1993)

    Article  Google Scholar 

  17. Townsend, A.A.: The mechanism of entrainment in free turbulent flows. J. Fluid Mech. 26, 689–715 (1966)

    Article  MathSciNet  Google Scholar 

  18. Townsend, A.A.: Organized eddy structures in turbulent flows. PCH, PhysicoChem. Hydrodyn. 8(1), 23–30 (1987)

    Google Scholar 

  19. Grant, H.L.: The large eddies of turbulent motion. J. Fluid Mech. 4, 149–190 (1958)

    Article  Google Scholar 

  20. Marusic, I., Adrian, R.A.: Scaling issues and the role of organized motion in wall turbulence. In: Davidson, P., Kaneda, Y., Sreenivasan, K.R. (eds.) Ten Chapters in Turbulence. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  21. Perry, A.E., Chong, M.S.: On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217 (1982)

    Article  MATH  Google Scholar 

  22. Nickels, T.B., Perry, A.E.: An experimental and theoretical study of the turbulent coflowing jet. J. Fluid Mech. 309, 157–182 (1996)

    Article  MathSciNet  Google Scholar 

  23. Marusic, I., Perry, A.E.: A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389–407 (1995)

    Article  Google Scholar 

  24. Yoda, M., Hesselink, L., Mungal, M.G.: Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)

    Article  Google Scholar 

  25. Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Mechanics of the turbulent nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501 (2005)

    Article  Google Scholar 

  26. Mathew, J., Basu, A.J.: Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 2065–2072 (2002)

    Article  MathSciNet  Google Scholar 

  27. Hunt, J.C.R., Eames, I., da Silva, C.B., Westerweel, J.: Interfaces and inhomogeneous turbulence. Philos. Trans. R. Soc. Lond. A 369, 811–832 (2011)

    Article  MATH  Google Scholar 

  28. Westerweel, J., Hofmann, T., Fukushima, C., Hunt, J.C.R.: The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33, 873–878 (2002)

    Article  Google Scholar 

  29. Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W., Tsinober, A.: Small-scale aspects of flows in proximity of the turbulent/non-turbulent interface. Phys. Fluids 19(7), 071702 (2007)

    Article  Google Scholar 

  30. Holzner, M., Luethi, B., Tsinober, A., Kinzelbach, W.: Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J. Fluid Mech. 639, 153–165 (2007)

    Article  Google Scholar 

  31. da Silva, C.B., Pereira, J.C.: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101 (2008)

    Article  Google Scholar 

  32. da Silva, C.B., Pereira, J.C.: The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. A 369, 738–753 (2011)

    Article  MATH  Google Scholar 

  33. da Silva, C.B., Taveira, R.R.: The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22, 121702 (2010)

    Article  Google Scholar 

  34. Westerweel, J., Petracci, A., Delfos, R., Hunt, J.C.R.: Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet. Phil. Trans. R. Soc. A 369, 723–737 (2011)

    Article  Google Scholar 

  35. Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W., Tsinober, A.: A Lagrangian investigation of the small scale features of turbulent entrainment through 3D-PTV and DNS. J. Fluid Mech. 598, 465–475 (2008)

    Article  MATH  Google Scholar 

  36. Effelsberg, E., Peters, N.: A composite model for the conserved scalar PDF. Combust. Flame 50, 351–360 (1983)

    Article  Google Scholar 

  37. Mellado, J.P., Wang, L., Peters, N.: Gradient trajectory analysis of a scalar field with internal intermittency. J. Fluid Mech. 626, 333–365 (2009)

    Article  MATH  Google Scholar 

  38. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  40. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  Google Scholar 

  41. Knudsen, E., Pitsch, H.: A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combust. Flame 154(4), 740–760 (2008)

    Article  Google Scholar 

  42. Falgout, R., Yang, U.: A library of high performance preconditioners. In: Lecture Notes in Computer Science, vol. 2331. Springer, Berlin Heidelberg (2002)

    Google Scholar 

  43. Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041–3044 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  44. Jiang, G.S., Peng, D.: Weighted ENO schems for Hamilton-Jacobi equations. J. Sci. Comput. 21(6), 2126–2143 (2000)

    MATH  MathSciNet  Google Scholar 

  45. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  46. Talbot, B., Mazellier, N., Renou, B., Danaila, L., Boukhalfa, M.: Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow. Exp. Fluids 47, 769–787 (2009)

    Article  Google Scholar 

  47. Amielh, M., Djeridane, T., Anselmet, F., Fulachier, L.: Velocity near-field of variable density turbulent jets. Int. J. Heat Mass Transfer 39(10), 2149–2164 (1996)

    Article  Google Scholar 

  48. Lubbers, C.L., Brethouwer, G., Boersma, B.J.: Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn. Res. 28(3), 189–208 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197–223 (1993)

    Article  Google Scholar 

  50. Richards, C.D., Pitts, W.M.: Global density effects on the self-preservation behaviour of turbulent free jets. J. Fluid Mech. 254, 417–435 (1993)

    Article  Google Scholar 

  51. Schefer, R.W., Dibble, R.W.: Rayleigh scattering measurements of mixture fraction in a turbulent nonreacting propane jet. AIAA J. 23(7), 1070–1078 (1986)

    Article  Google Scholar 

  52. Prasad, R.R., Sreenivasan, K.R.: Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7, 259–264 (1989)

    Article  Google Scholar 

  53. Sreenivasan, K.R., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386 (1986)

    Article  MathSciNet  Google Scholar 

  54. Hussain, A.K.M.F., Clark, A.R.: On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263–294 (1981)

    Article  Google Scholar 

  55. Alexopoulos, C.C., Keffer, J.F.: Turbulent wake in a passively stratified field. Phys. Fluids 14, 216–224 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gampert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gampert, M., Kleinheinz, K., Peters, N. et al. Experimental and Numerical Study of the Scalar Turbulent/Non-Turbulent Interface Layer in a Jet Flow. Flow Turbulence Combust 92, 429–449 (2014). https://doi.org/10.1007/s10494-013-9471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9471-y

Keywords

Navigation