Skip to main content

Advertisement

Log in

Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turonian, Middle East)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Shallow-marine microporous limestones account for many carbonate reservoirs. Their formation, however, remains poorly understood. Due to the lack of recent appropriate marine analogues, this study uses a lacustrine counterpart to examine the diagenetic processes controlling the development of intercrystalline microporosity. Late Miocene lacustrine microporous micrites of the Madrid Basin (Spain) have a similar matrix microfabric as Cenomanian to Early Turonian shallow-marine carbonates of the Mishrif reservoir Formation (Middle East). The primary mineralogy of the precursor mud partly explains this resemblance: low-Mg calcites were the main carbonate precipitates in the Cretaceous seawater and in Late Miocene freshwater lakes of the Madrid Basin. Based on hardness and petrophysical properties, two main facies were identified in the lacustrine limestones: a tight facies and a microporous facies. The tight facies evidences strong compaction, whereas the microporous facies does not. The petrotexture, the sedimentological content, and the mineralogical and chemical compositions are identical in both facies. The only difference lies in the presence of calcite overgrowths: they are pervasive in microporous limestones, but almost absent in tight carbonates. Early diagenetic transformations of the sediment inside a fluctuating meteoric phreatic lens are the best explanation for calcite overgrowths precipitation. Inside the lens, the dissolution of the smallest crystals in favor of overgrowths on the largest ones rigidifies the sediment and prevents compaction, while partly preserving the primary microporous network. Two factors appear essential in the genesis of microporous micrites: a precursor mud mostly composed of low-Mg calcite crystals and an early diagenesis rigidifying the microcrystalline framework prior to burial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alsharhan AS, Nairn AEM (2003) Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam, p 843

    Google Scholar 

  • Arribas ME, Bustillo A, Tsige M (2004) Lacustrine chalky carbonates: origin, physical properties and diagenesis (Palaeogene of the Madrid Basin, Spain). Sediment Geol 166(3–4):335–351

    Article  Google Scholar 

  • Baronnet A (1982) Ostwald ripening in solution–the case of calcite and mica. Estud Geol 38:185–198

    Google Scholar 

  • Bellanca A, Calvo JP, Censi P, Elizaga E, Neri R (1989) Evolution of lacustrine diatomite carbonate cycles of Miocene age, southeastern Spain; petrology and isotope geochemistry. J Sediment Res 59(1):45–52

    Google Scholar 

  • Bellanca A, Calvo JP, Censi P, Neri R, Pozo M (1992) Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy. Sediment Geol 76(3-4):135–153

    Article  Google Scholar 

  • Budd DA (1989) Micro-rhombic calcite and microporosity in limestones: a geochemical study of the Lower Cretaceous Thamama Group, U.A.E. Sediment Geol 63(3–4):293–311

    Article  Google Scholar 

  • Calvo JP, Daams R, Morales J, Lopez-Martinez N, Agusti J, Anadon P, Armenteros I, Cabrera L, Civis J, Corrochano A, Diaz-Molina M, Elizaga E, Hoyos M, Martin-Suarez E, Martinez J, Moissinet E, Muñoz A, Perez-Garcia A, Perez-González A, Porttero JM, Robles F, Santisteban C, Torres T, Van Der Meulen AJ, Vera JA, Mein P (1993) Up-to-date Spanish continental Neogene synthesis and paleoclimatic interpretation. Rev Soc Geol Esp 6(3–4):29–40

    Google Scholar 

  • Calvo JP, Ordonez S, Garcia del Cura MA, Hoyos M, Alonso Zarza AM (1994) Madrid Basin (Neogene), Spain. In: Gierlowski-Kordesch E, Kelts K (eds) Global geological record of lake basins. University Press, Cambridge, pp 303–305

    Google Scholar 

  • Calvo JP, Jones BF, Bustillo M, Fort R, Alonso Zarza AM, Kendall C (1995) Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, central Spain. Chem Geol 123(1–4):173–191

    Article  Google Scholar 

  • Calvo JP, Alonso Zarza AM, Garcia del Cura MA, Ordonez S, Rodriguez-Aranda JP, Sanz Montero ME (1996) Sedimentary evolution of lake systems through the Miocene of the Madrid Basin: paleoclimatic and paleohydrological constraints. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. University Press, Cambridge, pp 272–277

    Google Scholar 

  • De Vicente G, Calvo JP, Munoz-Martin A (1996a) Neogene tectono-sedimentary review of the Madrid Basin. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. University Press, Cambridge, pp 268–271

    Google Scholar 

  • De Vicente G, Gonzalez-Casado JM, Munoz-Martin A, Giner J, Rodriguez-Pascua MA (1996b) Structure and tertiary evolution of the Madrid Basin. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. University Press, Cambridge, pp 263–267

    Google Scholar 

  • Dean WE, Fouch TD (1983) Lacustrine environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. AAPG, Tulsa, pp 98–130

    Google Scholar 

  • Dickson JAD (2002) Fossil echinoderms as monitor of the Mg/Ca ratio of the Phanerozoic oceans. Science 298:1222–1224

    Article  Google Scholar 

  • Dickson JAD (2004) Echinoderm skeletal preservation: calcite-aragonite Seas and the Mg/Ca ratio of Phanerozoic oceans. J Sediment Res 74(3):355–365

    Article  Google Scholar 

  • Ehrenberg SN (2004) Factors controlling porosity in Upper Carboniferous-Lower Permian carbonate strata of the Barents Sea. AAPG Bull 88(12):1653–1676

    Article  Google Scholar 

  • Ehrenberg SN, Boassen T (1993) Factors controlling permeability variation in sandstones of the Garn Formation in Trestakk Field, Norwegian continental shelf. J Sediment Res 63(5):929–944

    Google Scholar 

  • Eugster HP, Kelts K (1983) Lacustrine chemical sediments. In: Goudie AS, Pye K (eds) Chemical sediments and geomorphology: precipitates and residua in the near-surface environment. Academic Press, London, pp 321–368

    Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24(3):279–283

    Article  Google Scholar 

  • Instituto geologico y minero de Espana (1975) Mapa geologico de Espana 1:50’000: Chinchon. Inst Tecnol Geomin Esp, Madrid

    Google Scholar 

  • Junco F, Calvo JP (1983) Cuenca de Madrid. In: Geologia de Espana vol 2. Inst Tecnol Geomin Esp, Madrid, pp 534–543

  • Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, Berlin Heidelberg New York, pp 295–323

    Google Scholar 

  • Lambert L, Durlet C, Loreau J-P, Marnier G (2006) Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic–Cretaceous): keys for recognition and timing. Mar Petrol Geol 23(1):79–92

    Article  Google Scholar 

  • Lasemi Z, Sandberg PA (1984) Transformation of aragonite-dominated lime muds to microcrystalline limestones. Geology 12(7):420–423

    Article  Google Scholar 

  • Lasemi Z, Sandberg PA (1993) Microfabric and compositional clues to dominant mud mineralogy of micrite precursors. In: Rezak R, Lavoie DL (eds) Carbonate microfabrics. Springer, Berlin Heidelberg New York, pp 173–185

    Google Scholar 

  • Leng MJ, Lamb AL, Heaton THE, Marshall JD, Wolfe BB, Jones MD, Holmes JA, Arrowsmith C (2006) Isotopes in lake sediments. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Springer, Berlin Heidelberg New York, pp 147–184

    Chapter  Google Scholar 

  • Lerman A (1978) Lakes: chemistry, geology, physics. Springer, Berlin Heidelberg New York, p 363

    Google Scholar 

  • Loreau J-P (1972) Pétrographie de calcaires fins au microscope électronique à balayage: introduction à une classification des micrites. C R Acad Sci Paris 274(6):810–813

    Google Scholar 

  • Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294:1086–1088

    Article  Google Scholar 

  • Morse JW, Casey WH (1988) Ostwald processes and mineral paragenesis in sediments. Am J Sci 288(6):537–560

    Google Scholar 

  • Moshier SO (1989) Microporosity in micritic limestones: a review. Sediment Geol 63(3–4):191–213

    Article  Google Scholar 

  • Munnecke A, Samtleben C (1996) The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies 34(1):159–176

    Article  Google Scholar 

  • Ostwald W (1887) Lehrbuch der Allgemeinen Chemie. Verlag von Wilhelm Engelmann, Leipzig, p 909

    Google Scholar 

  • Perkins RD (1989) Origin of micro-rhombic calcite matrix within cretaceous reservoir rock, West Stuart City Trend, Texas. Sediment Geol 63(3–4):313–321

    Article  Google Scholar 

  • Richard J, Sizun JP, Machhour L (2007) Development and compartmentalization of chalky carbonate reservoirs: the Urgonian Jura-Bas Dauphine platform model (Genissiat, southeastern France). Sediment Geol 198(3–4):195–207

    Article  Google Scholar 

  • Sandberg PA (1983) An oscillating trend in phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  Google Scholar 

  • Sanz ME (1994) Sedimentologia de las formaciones neogenas del sur de la Cuenca de Madrid, con enfasis en los procesos karsticos asociados a las rupturas sedimentarias del Plioceno. Dissertation, Universidad Complutense de Madrid

  • Sanz E, Sesé C, Calvo JP (1992) Primer hallazgo de Micromamiferos de edad turoliense en la Cuenca de Madrid. Estud Geol 48:171–178

    Article  Google Scholar 

  • Siemann MG (2003) Extensive and rapid changes in seawater chemistry during the Phanerozoic: evidence from Br contents in basal halite. Terra Nova 15(4):243–248

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144(1–2):3–19

    Article  Google Scholar 

  • Teranes JL, McKenzie JA, Lotter AF, Sturm M (1999) Stable isotope response to lake eutrophication: calibration of a high-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnol Oceanogr 44(2):320–333

    Article  Google Scholar 

  • Utrilla R, Vázquez A, Anadón P (1998) Paleohydrology of the Upper Miocene Bicorb Lake (eastern Spain) as inferred from stable isotopic data from inorganic carbonates. Sediment Geol 121(3–4):191–206

    Article  Google Scholar 

  • Volery C, Davaud E, Foubert A, Caline B (2009) Shallow-marine microporous carbonate reservoir rocks in the Middle East: relationship with seawater Mg/Ca ratio and eustatic sea level. J Petrol Geol 32(4):313–325

    Article  Google Scholar 

  • Westphal H (2006) Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review. Int J Earth Sci 95(6):947–961

    Article  Google Scholar 

  • Wright VP, Alonzo Zarza AM, Sanz ME, Calvo JP (1997) Diagenesis of Late Miocene micritic lacustrine carbonates, Madrid Basin, Spain. Sediment Geol 114(1–4):81–95

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Geneva and by Total Exploration and Production. The review of a previous version of the manuscript by Axel Munnecke (University of Erlangen) is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chadia Volery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volery, C., Davaud, E., Foubert, A. et al. Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turonian, Middle East). Facies 56, 385–397 (2010). https://doi.org/10.1007/s10347-009-0210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-009-0210-8

Keywords

Navigation