Skip to main content
Log in

Middle Jurassic stromatactis mud-mound in the Pieniny Klippen Belt (Western Carpathians)

  • Published:
Facies Aims and scope Submit manuscript

Summary

A stromatactis mud-mound has been found near Slavnické Podhorie in the Czorsztyn Unit of the Pieniny Klippen Belt (Western Carpathians, Slovakia). Its stratigraphic range is Bathonian to Callovian and it is one of the youngest known true stromatactis mud-mounds. The complete shape the mound is not visible since the klippe is a tectonic block encompassed by younger Cretaceous marls. The matrix is micritic to pelmicritic mudstone, wackestone to packstone with pelecypods, brachiopods, ammonites, and crinoids. An important component of the mound is stromatactis cavities that occur as low as the underlying Bajocian-Bathonian crinoidal limestones. The stromatactis cavities are filled by radiaxial fibrous calcite (RFC) as well as in some places by internal sediment and, finally, by clear blocky calcite. Some cavities remain open with empty voids in the centres. In some stromatactis cavities, tests of cavedwelling ostracodsPokornyopsis sp. were found, surrounded by the latest stages of the RFC. This indicates that stromatactis cavities formed an open network enabling migration of the ostracods and their larvae over a period of time.

Except in the case of the stromatactis cavities, there are numerous examples of seeming recrystallizationsensu Black (1952) and Ross et al. (1975) and Bathurst (1977). The radiaxial fibrous calcite encloses patches of matrix and isolated allochems. The RFC crystals are oriented perpendicularly to the substrate whether it is a cavity wall or enclosed allochems. This means that the RFC crystals could not grow from the centre of the cavity outward as postulated by Ross et al. (1975). There are also numerous “floating” isolated allochems, which are much smaller than the surrounding RFC crystals. The explanation involving three-dimensional interconnection of allochems seems to be unlikely. In the discussed mud-mound there is a conflict between apparently empty cavities that had to exist in the sediment and seeming “recrystallization” related to the same RFC that forms the initial void filling. The authors favor an alternative explanation of the “recrystallization”. We presume that the allochems served as nucleation points on which the crystals started to grow. Obviously, the allochems and the micritic patches were different from the surrounding material. RFC crystals (either short-or long-bladed) of the “recrystallization” spar grew at the expense of decaying microbial mucillages. The mucus can enclose peloids, allochems, or whole micritic patches that “floated” in the cavity and served as nucleation sites for the RFC crystals. The entire mud-mound represents a microbially bound autochthonous micritic mass; the stromatactis and stromatactis-like cavities originated where purer mucillage patches occurred, giving rise to open spaces. Such features as the morphological variety of stromatactis fabrics, the pervasive penetration of the sparry calcite into matrix, and the enclosure of the “floated” allochems and mudstone patches by sparry calcite, seem to provide support for the presence of mucus aggregates within the mound body. The mucus might be related to protozoans rather than to sponges or other well organized metazoan organisms.

Occurrence of the stromatactis cavities in the underlying Bajocian-Bathonian crinoidal limestones support the inference on biological origin of the stromatactis fabrics. The alternative inorganic models of stromatactis origin (e.g., internal erosion or water-escape) are hardly applicable to the sediment formed by crinoidal skeletal detritus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrusov, D. (1945): Geological investigations of the inner Klippen Belt in the Western Carpathians. Part IV-Statigraphy of Dogger and Malm, Part V—Stratigraphy of the Cretaceous.-Prace St. GU,13, 1–176, Bratislava, (In Slovak).

    Google Scholar 

  • Arp, G., Wedermeyer, U. and Reitner, J. (2001). Fluvial tufa formation in a hard-water creek (Deinschwanger Bach, Franconian Alb, Germany.—Facies,44, 1–22, Erlangen.

    Google Scholar 

  • Aubrecht, R. (2001): New occurrences of the Krasín Breccia (Pieniny Klippen Belt, West Carpathians): indication of Middle Jurassic synsedimentary tectonics.—Acta Geol. Univ. Com.,56, 35–56, Bratislava.

    Google Scholar 

  • Aubrecht, R. and Kozur, H. (1995):Pokornyopsis (Ostracoda) from submarine fissure fillings and cavities in the Late Jurassic of Czorsztyn Unit and the possible origin of the Recent anchialine faunas.—Neues Jb. Geol. Paläont. Abh.,196/1, 1–17, Stuttgart.

    Google Scholar 

  • Aubrecht, R., Misik, M. and Sykora, M. (1997): Jurassic synrift sedimentation on the Czorsztyn Swell of the Pieniny Klippen Belt in Western Slovakia.—ALEWECA symp. Sept. 1997, Introduct. articles to the excursion, 53–64, Bratislava.

  • Bathurst, R.G.C. (1977): Ordovician Meiklejohn bioherm, Nevada.—Geol. Mag.,114, 308–311, Cambridge.

    Google Scholar 

  • Bathurst, R.G.C. (1982): Genesis of stromatactis cavities between submarine crusts in paleozoic carbonate mud buildups.—J. geol. Soc. London,139/2, 165–181, Oxford.

    Google Scholar 

  • Bathurst, R.G.C. (1998): The world's most spectacular carbonate mudmounds (Middle Devonian, Algerian Sahara)-discussion.—J. Sed. Res.,68/5, p. 1051, Tulsa.

    Google Scholar 

  • Belka, Z. (1994): Devonian carbonate mud buildups of the Central Sahara and their relation to submarine hydrothermal venting.—Przegl. Geol.,42, 341–346, Warszawa (in Polish).

    Google Scholar 

  • Belka, Z. (1998): Early Devonian kess-kess carbonate mud mounds of the eastern Anti-Atlas (Morocco), and their relation to submarine hydrothermal venting.—J. Sed. Res.,68, 368–377, Tulsa.

    Google Scholar 

  • Bernet-Rollande, M.C., Maurin, A.F. and Monty, C.L.V. (1981): De la bactérie au réservoir carbonate.—Pétrol. et Techniq.,283, 96–98.

    Google Scholar 

  • Birkenmajer, K. (1977): Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland.—Stud. Geol. Pol.,45, 1–158, Kraków.

    Google Scholar 

  • Black, W.W. (1952): The origin of the supposed tufa bands in Carboniferous reef limestones.—Geol. Mag.,89, 195–200, Cambridge.

    Article  Google Scholar 

  • Bosence, D.W.J. and Bridges, P.H. (1995): A review of the origin and evolution of carbonate mud-mounds.-In: Monty, C.L.V., Bosence, D.W.J., Bridges P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their origin and evolution.-IAS Spec. Publ.23, 11–48, Oxford.

  • Bourque, P.A. and Gignac, H. (1986): Sponge constructed stromatactis mud-mounds. Silurian of Gaspé, Québec-reply.—J. Sed. Petrol.,56/3, 461–463, Tulsa.

    Google Scholar 

  • Bourque P.A. and Boulvain, F. (1993): A model for the origin and petrogenesis of the red stromatactis limestone of Paleozoic carbonate mounds.—J. Sed. Petrol.,63/4, 607–619, Tulsa.

    Google Scholar 

  • Bridges, P.H. and Chapman, A.J. (1988): The anatomy of a deep water mud-mound complex to the southwest of the Dinantian platform in Derbyshire, UK.—Sedimentology,35, 139–162, Oxford.

    Article  Google Scholar 

  • Camoin, G. and Maurin, A.-F. (1988): Rôles des micro-organismes (bactéries, cyanobactéries) dans la genèse des “Mud Mounds”. Exemples du Turonien des Jebels Biréno et Mrhila (Tunisie).—C. R. Acad. Sci. Paris,307, Sér. II, 401–407, Paris.

    Google Scholar 

  • Canerot, J. (2001): Cretaceous mud-mounds from the Western Pyrenees and the South-Aquitaine Basin (France). Stratigraphic and geodynamic settings; petroleum trap properties.—Géol. Méditer.,28/1–2, 33–36, Marseille.

    Google Scholar 

  • Carozzi, A.V. and Zadnik, V.E. (1959): Microfacies of Wabash reef, Wabash, Indiana.—J. Sed. Petrol.,29, 164–171, Tulsa.

    Google Scholar 

  • Carver, R.E. (1971), ed.): Procedures in sedimentary petrology.—1–653, New York, (Wiley).

    Google Scholar 

  • Chafetz, H.S. (1986): Marinepeloids: a product of bacterially induced precipitation of calcite.—J. Sed. Petrol.,56, 812–817, Tulsa.

    Google Scholar 

  • Coron, C.R. and Textoris, D.A. (1974): Non-calcarous algae in Silurian carbonate mud mound, Indiana.—J. Sed. Petrol.,44/4, 1248–1250, Tulsa.

    Google Scholar 

  • Craig, H. (1957): Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide.—Geochim. Cosmochim. Acta,12, 133–140, Amsterdam.

    Article  Google Scholar 

  • Cross, T.A. and Klosterman, M.J. (1981). Primary submarine cements and neomorphic spar in a stromatolitic-bound phylloid algal bioherm, Laborcita Formation (Wolfcampian), Sacramento Mountains, New Mexico, U.S.A.—In: Monty, C.L.V. (ed.): Phanerozoic stromatolites.-60–73, Berlin (Springer).

    Google Scholar 

  • Desbordes, B. and Maurin, A.F. (1974): Troix exemples d'études du Frasnien de l'Alberta, Canada.—Notes Mém. Cie. Fr. Pétrol.,11, 293–336, Paris.

    Google Scholar 

  • Dunham, R.J. (1969): Early vadose silt in Towsend mound (reef), New Mexico.—In: Friedman, G.M. (ed.): Depositional environments in carbonate rocks-a symposium.-SEPM Spec. Publ.14, 139–181, Tulsa.

  • Dupont, E. (1881): Sur l'origine des calcaires dévoniens de la Belgique.—Mus. Roy. Hist. Nat. Belg., Bull.,1, 264–280, Bruxelles.

    Google Scholar 

  • Dupont, E. (1882): Les Iles coralliennes de Roly et de Phillippeville.—Bull. Acad. Roy. Belg., sér. 3,2 89–160, Bruxelles.

    Google Scholar 

  • Flajs, G. and Hüssner, H. (1993): A microbial model for the Lower Devonian stromatactis mud mounds of the Montagne Noire (France).—Facies,29, 179–194, Erlangen.

    Article  Google Scholar 

  • Flajs, G., Hüssner, H. and Vigener, M. (1996): Stromatactis mud mounds in the Upper Emsian of the Montagne Noire (France): formation and diagenesis of stromatactis structures.-In: Reitner, J., Neuweiler, F. and Gunkel, F. (eds.): Global and regional controls on biogenic sedimentation. I. Reef evolution. Research reports.-Gött. Arb. Geol. Paläont., Sb2, 345–348, Göttingen.

  • Hammes, U. (1995): Initiation and development of small-scale sponge mud-mounds, Late Jurassic, southern Franconian Alb, Germany.-In: Monty, C.L.V., Bosence, D.W.J., Bridges P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their origin and evolution.-IAS Spec. Publ.23, 335–357, Oxford.

  • Heckel, P.H. (1972): Possible inorganic origin for stromatactis in calcilutite mounds in the Tully Limestone, Devonian of New York.—J. Sed. Petrol.,42/1, 7–18, Tulsa.

    Google Scholar 

  • Henning, N.G., Meyers, W.J. and Grams, J.C. (1989): Cathodoluminescence in diagenetic calcites: The roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements.—J. Sed. Petrol.,59/3, 404–411, Tulsa.

    Google Scholar 

  • Hovland, M., Talbot, M., Qvale, H., Olaussen, S. and Aasberg, L. (1987): Methane-related carbonate cements in pockmarks of the North Sea.—J. Sed. Petrol.,57, 881–892, Tulsa.

    Google Scholar 

  • Hüssner, H., Flajs, G. and Vigener, M. (1995): Stromatactis-mud mound formation-a case study from the Lower Devonian, Montagne Noire (France).—Beitr. Paläont.,20, 113–121, Wien.

    Google Scholar 

  • James, N.P. and Gravestock, D. (1990): Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia.—Sedimentology,37, 455–480, Oxford.

    Article  Google Scholar 

  • Jansa, L.F., Pratt, B.R. and Dromart, G. (1989): Deep water thrombolite mounds from the Upper Jurassic of offshore Nova Scotia.-In: Geldsetzer, H.H., James, N.P. and Tebutt, G.E. (eds.): Reefs, Canada and adjacent areas.-Mem. Can. Soc. Petrol. Geol.,13, 725–735, Calgary.

  • Jenkyns, H.C. (1970): Growth and disintegration of carbonate platform.—N. Jahrb. Geol. Paläont., Mon.,1970, 325–344, Stuttgart.

    Google Scholar 

  • Kauffman, E.G., Arthur, M.A., Howe, B. and Scholle, P.A. (1996): Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes) Western Interior seaway, U.S.A.—Geology,24/9, 799–802, Boulder.

    Article  Google Scholar 

  • Kaufmann, B. (1997): Diagenesis of Middle Devonian carbonate mounds of the mader Basin (eastern Anti-Atlas, Morocco).—J. Sed. Res.,65, 5, 945–956, Tulsa.

    Google Scholar 

  • Krause, F.F. (1999): Genesis of a mud-mound, Meijlejohn Peak, lime mud-mound, Bare Mountain Quadrangle, Nevada, USA.—Sedim. Geol.,145/3–4, 189–213, Amsterdam.

    Google Scholar 

  • Kukal, Z. (1971): Open-space structures in the Devonian limestones of the Barrandian (Central Bohemia).—Cas. pro miner. a geol.,16/4, 345–362, Praha.

    Google Scholar 

  • Kutek, J. and Wierzbowski, A. (1986): A new account on the Upper Jurassic stratigraphy and ammonites of the Czorsztyn succession, Pieniny Klippen Belt, Poland.—Acta Geol. Pol.,36/4, 289–316 Warszawa.

    Google Scholar 

  • Lees, A. (1964): The structure and origin of the Waulsortian (Lower Carboniferous) reefs of west-central Eire.—Phil. Trans. R. Soc. Lond., ser. B.,247, 483–531, London.

    Article  Google Scholar 

  • Lees, A., and Miller J. (1995): Waulsortian banks.—In: Monty, C.L.V., Bosence, D.W.J., Bridges P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their origin and evolution.—IAS Spec. Publ.23, 191–271, Oxford.

  • Leinfelder, R.R. (1985): Cyanophyte calcification morphotypes and depositional environments (Alenquer Oncolite, Upper Kimmeridgian?, Portugal).—Facies,12, 253–274, Erlangen.

    Article  Google Scholar 

  • Leinfelder, R.R. and Keupp, H. (1995): Upper Jurassic mud mounds: allochthonous sedimentationversus autochthonous carbonate production.—In: Reitner, J. and Neuweiler, F., 1995: Mud mounds: recognizing a polygenetic spectrum of fine-grained carbonate buildups.—Facies,32, 17–26, Erlangen.

  • Logan, B.W. and Semeniuk, V. (1976). Dynamic metamorphism; processes and products in Devonian carbonate rocks, Canning Basin, Western Australia.—Geol. Soc. Australia Spec. Publ.,6, 1–138, Melbourne.

    Google Scholar 

  • Lohmann, K.C. (1988): Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst.—In: James, N.P. and Choquette, P.W. (eds.): Paleokarst.— 58–80, New York (Springer).

    Google Scholar 

  • Lowenstam, H.A. (1950): Niagaran reefs of the Great Lakes area.— J. Geol.,58, 430–487, Oxford.

    Google Scholar 

  • Mathur, A. (1975): A deeper water mud mound facies in the Alps. —J. Sed. Petrol.45/4, 787–793, Tulsa.

    Google Scholar 

  • Matyszkiewicz, J. (1993): Genesis of stromatactis in an Upper Jurassic carbonate buildup (Mlynka, Cracow region, Southern Poland): internal reworking and erosion of organic growth vavities.—Facies,28, 87–96, Erlangen.

    Article  Google Scholar 

  • Matyszkiewicz, J. (1997): Stromatactis cavities and stromatactislike cavities in the Upper Jurassic carbonate buildups at Mlynka and Zabierzów (Oxfordian southern Poland).—Ann. Soc. Geol. Pol.,67/1, 45–55, Kraków.

    Google Scholar 

  • Mazzullo, S.J., Bischoff, W.D. and Lobitzer, H. (1990): Diagenesis of radiaxial fibrous calcite in a subunconformity, shallowburial setting: Upper Triassic and Liassic, Northern Calcareous Alps, Austria.—Sedimentology,37, 407–425, Oxford.

    Article  Google Scholar 

  • Misik, M., 1979: Sedimentological and microfacies study in the Jurassic of the Vrsatec (castle) klippe—neptunic dykes, Oxfordian bioherm facies.—Záp. Karpaty, Sér. geol.,5, 7–56, Bratislava (in Slovak, with English summary).

    Google Scholar 

  • Misik, M., Siblík, M., Sykora, M. and Aubrecht, R. (1994): Jurassic brachiopods and sedimentological study of the Babiná klippe near Bohunice (Czorsztyn Unit. Pieniny Klippen Belt). —Mineralia Slovaca,26/4, 255–266, Kosice.

    Google Scholar 

  • Monty, C.L.V. (1995): The rise and nature of carbonate mudmounds: an introductory actualistic approach.—In: Monty, C.L.V. Bosence, D.W.J. Bridges P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their origin and evolution. IAS Spec. Publ.23, 11–48, Oxford.

  • Mounji, D., Bourque, P.-A., and Savard, M.M. (1998): Hydrothermal origin of Devonian conical mounds (Kess-Kess) of Hamar Lakhdad Ridge, Anti-Atlas, Morocco.—Geology,26/12, 1123–1125, Boulder.

    Article  Google Scholar 

  • Myczynski, R. and Wierzbowski, A. (1994): The Ammonite Succession in the Callovian, Oxfordian and Kimmeridgian of the Czorsztyn Limestone Formation, at Halka Klippe, Pieniny Klippen Belt, Carpathians.—Bull. Pol. Acad. Sci. Earth. Sci.,42/3, 156–163, Warszawa.

    Google Scholar 

  • Neumann, A.C., Kofoed, J.W., and Keller, G.H. (1977): Lithoherms in the Straits of Florida.—Geology,5, 4–10, Boulder.

    Article  Google Scholar 

  • Neuweiler, F., Bourque, P.-A. and Boulvain, F. (2001): Why is stromatactis so rare in Mesozoic carbonate mud mounds?.— Terra Nova,13/5, 338–346, Oxford.

    Article  Google Scholar 

  • Neuweiler, F., Gautret, P., Thiel, V., Langes, R., Michaelis, W., and Reitner, J. (1999): Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): insights into organomineralic deposits of the geological record.—Sedimentology,46, 837–859, Oxford.

    Article  Google Scholar 

  • Orme, G.R. and Brown, W.W.M. (1963): Diagenetic fabrics in the Avonian Limestones of Derbyshire and North Wales.—Proc. Yorkshire Geol. Soc.,34/1–3, 51–66 York.

    Article  Google Scholar 

  • Otte, C. Jr. and Parks, J.M., Jr., 1963: Fabric studies of Virgial and Wolfcamp bioherms, New Mexico.—J. Geol.,71, 380–396, Chicago.

    Article  Google Scholar 

  • Pascal, A. and Przybyla, A. (1989): Processus, biosédimentaires et diagénétiques précoces dans les mud-mounds (Thrombolite-mounds) urgoniens d''spagne du Nord (Aptien-Albien) et leus signification.—Géol. Méditer.,16/2–3, 171–183, Marseille.

    Google Scholar 

  • Pevny, J. (1969). Middle Jurassic brachiopods in the Klippen Belt of the central Váh Valley.—Geol. práce, Správy,50, 133–160, Bratislava (in Slovak with English summarry).

    Google Scholar 

  • Philcox, M.E. (1963): Banded calcite mudstone in the Lower Carboniferous “reef” knolls of the Dublin Basin, Ireland.—J. Sed. Petrol.,33/4, 904–913, Tulsa.

    Google Scholar 

  • Pratt, B.R. (1982): Stromatolitic framework of carbonate mudmounds. —J. Sed. Petrol.,52/4, 1203–1227, Tulsa.

    Google Scholar 

  • Pratt, B.R. (1986): Sponge constructed stromatactis mud-mounds. Silurian of Gaspé, Québec-discussion.—J. Sed. Petrol..,56/3, 459–460, Tulsa.

    Google Scholar 

  • Pratt, B.R. (1995): The origin, biota and evolution of deep-water mud-mounds.—In: Monty, C.L.V., Bosence, D.W.J., Bridges P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their origin and evolution.—IAS Spec. Publ.23, 49–123, Oxford.

  • Rakús, M., 1990: Ammonites and stratigraphy of Czorsztyn Limestones base in Klippen Belt of Slovakia and Ukrainian Carpathians.—Knih. Zem. plynu a nafty,9b, 73–108, Hodonín (in Slovak with English summary).

    Google Scholar 

  • Reitner, J., Neuweiler, F. and Gautret P. (1995): Modern and fossil automicrites: implications for mud mound genesis—In: Reitner, J. and Neuweiler, F. (eds.): Mud Mounds: A Polygenetic Spectrum of Fine-grained Carbonate Buildups.—Facies,32, 4–17, Erlangen.

  • Ross, R.J., Jr., Jaanusson, V. and Friedman, I. (1975): Lithology and origin of Middle Ordovician calcareous mudmounds at Meiklejohn Peak southern Nevada.—U.S. Geol. Surv. Prof. Paper,871, 1–48, Washington.

    Google Scholar 

  • Schmid, D.U., Leinfelder, R.R. and Nose, M. (2001): Growth dynamics and ecology of Upper Jurassic mounds, with comparisons to Mid-Palaeozoic mounds.—Sedim. Geol.,145/3–4, 343–376, Amsterdam.

    Article  Google Scholar 

  • Schwarzacher, W. (1961): Petrology and structure of some Lower Carboniferous reefs in northwestern Ireland.—AAPG Bull.,46, 1481–1503, Tulsa.

    Google Scholar 

  • Shinn, E.A. (1968): Burrowing in Recent lime sediments of Florida and the Bahamas.—J. Paleont.,42/4, 879–894.

    Google Scholar 

  • Textoris, D.A. (1966): Algal cap for a Niagaran (Silurian) carbonate mud mound of Indiana.—J. Sed. Petrol.,36/2, 455–461, Menasha.

    Google Scholar 

  • Textoris, D.A. and Carozzi, A.V. (1964): Petrography and evolution of Niagaran (Silurian) reefs, Indiana.—AAPG Bull.,48, 397–426, Tulsa.

    Google Scholar 

  • Tsien, H.H. (1985a): Origin of Stromatactis-a replacement of colonial microbial accretion.—In: Toomey, D.F., and Nitecki, M.H. (eds.): Paleoalgology.—274–289, Berlin (Springer).

    Google Scholar 

  • Tsien, H.H., (1985b): Algal-bacterial origin of micrites in mud mounds.—In: Toomey, D.F. and Nitecki, M.H. (eds.): Paleoalgology.—290–2296, Berlin (Springer).

    Google Scholar 

  • Wallace, M.W. (1987): The role of internal erosion and sedimentation in the formation of stromatactis mudstones and associated lithologies.—J. Sed. Petrol.,57, 4, 695–700, Tulsa.

    Google Scholar 

  • Wendt, J., Belka, Z., Kaufmann, B., Kostrewa, R., and Hayer, J. (1997): The world's most spectacular carbonate mud mounds (Middle Devonian, Algerian Sahara).—J. Sed. Petrol,68/5, 1051–1052, Tulsa.

    Google Scholar 

  • Wendt, J. et al. (1998): The world's most spectacular carbonate mud mounds (Middle Devonian, Algerian Sahara)-reply.—J. Sed. Res.,68/5, 1051–1052, Tulsa.

    Google Scholar 

  • Wetzel, A. and Allia, V. (2000): The significance of hiathus beds in shallow-water mudstones: an example from the Middle Jurassic of Switzerland.—J. Sed. Res.,70/1, 170–180, Tulsa.

    Google Scholar 

  • Wierzbowski, A. Jaworska, M. and Krobicki, M. (1999): Jurassic (Upper Bajocian-Lowest Oxfordian) ammonitico rosso facies in the Pieniny Klippen Belt. Carpathians, Poland: its fauna, age, microfacies and sedimentary environment.—Stud. Geol. Pol.,115, 7–74, Kraków.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubrecht, R., Szulc, J., Michalik, J. et al. Middle Jurassic stromatactis mud-mound in the Pieniny Klippen Belt (Western Carpathians). Facies 47, 113–126 (2002). https://doi.org/10.1007/BF02667709

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667709

Keywords

Navigation