Skip to main content
Log in

A Late Cretaceous epeiric carbonate platform: the Haftoman Formation of Central Iran

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

An integrated study of the litho-, bio-, and microfacies of several sections has greatly improved the knowledge on the stratigraphy and depositional setting of the Coniacian to Campanian Haftoman Formation in the Khur area of the northern Yazd Block, Central Iran. Generally, the Haftoman Formation rests on a major tectonic unconformity and commences with a basal conglomerate followed by up to 900 m of shallow-water carbonates with local red sandstone intercalations. Five different depositional environments (from distal to proximal) characterize the facies associations (FA) of the Haftoman Formation: silty, spiculitic wackestone (proximal basin, FA I), bio-/intraclastic wacke-, pack-, and grainstone (marginal shoals, FA II), bioclastic rud-/float-/boundstone (outer platform, FA III), silty mud-/wackestone (lagoonal inner platform, FA IV), and sandstone/sandy limestone (areas close to the mouth of ephemeral streams, FA V). The litho-, micro-, and biofacies of the Haftoman Formation are typical for an epeiric carbonate platform characterized by an arid climate and lagoonal circulation, resulting in nutrient-poor waters, warm temperatures, and high salinities. The Haftoman Platform was attached to an emergent arid hinterland formed by the Anarak Metamorphic Complex to the west and southwest of the study area. Unconformity-bounded depositional units indicate sea-level changes that may correspond to 400-kyr high-frequency sequences but further studies are needed to fully exploit the potential of sequence stratigraphy for regional and inter-regional correlation of the Haftoman Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aistov L, Melnikov B, Krivyakin B, Morozov L, Kiristaev V (1984) Geology of the Khur area (Central Iran). Explanatory text of the Khur quadrangle map 1:250,000. V/O Technoexp Rep 20:1–130

    Google Scholar 

  • Arzani N (2011) Stylolite networks in dolomitized limestones and their control on polished decorative stones: a case study from Upper Cretaceous Khur quarries, central Iran. Geopersia 5:25–37

    Google Scholar 

  • Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155

    Article  Google Scholar 

  • Barrier E, Vrielynck B (2008) Map 7: early Campanian (80.6–83.5 Ma). In: Barrier E, Vrielynck B (eds) Palaeotectonic maps of the Middle East—tectono-sedimentary–palinspastic maps from the Late Norian to Pliocene. Comm Geol Map World (CGMW), Paris

  • Baumfalk YA, van Hinte JE (1985) Orbitoides media (d’Archiac) in the Campanian deposits of the A 10 motorway at Mirambeau (Charente maritime). Cretac Res 6:81–189

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Towards a palaeogeography and tectonic evolution of Iran. Canad J Earth Sci 18:210–265

    Article  Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J Geol Soc Lond 139:605–614

    Article  Google Scholar 

  • Berra F, Zanchi A, Mattei M, Nawab A (2007) Late Cretaceous transgression on a Cimmerian high (Neka Valley, Eastern Alborz, Iran): a geodynamic event recorded by glauconitic sands. Sedim Geol 199:189–204

    Article  Google Scholar 

  • Boulila S, Galburn B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD (2011) On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci Rev 109:94–112

    Article  Google Scholar 

  • Cifelli F, Mattei M, Rashid H, Ghalamghash J (2013) Right-lateral transpressional tectonics along the boundary between Lut and Tabas blocks (Central Iran). Geophys J Int 193:1153–1165

    Article  Google Scholar 

  • Coates AG (1973) Cretaceous Tethyan coral-rudist biogeography related to the evolution of the Atlantic Ocean. Spec Pap Palaeont 12:169–174

    Google Scholar 

  • Davoudzadeh M (1997) Iran. In: Moores EM, Fairbridge RM (eds) Encyclopedia of European and Asian Regional Geology. Encyclopedia of Earth Sciences Series. Chapman and Hall, London, pp 384–405

    Chapter  Google Scholar 

  • Davoudzadeh M, Soffel H, Schmidt K (1981) On the rotation of the Central-East Iran microplate. N Jb Geol Paläont Mh 1981:180–192

    Google Scholar 

  • Delavari M, Amini S, Schmitt AK, McKeegan KD, Harrison TM (2014) U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos 200–201:197–211

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Droste H (2010) High-resolution seismic stratigraphy of the Shu’eiba and Natih formations in the Sultanate of Oman: implications for Cretaceous epeiric carbonate platform systems. In: Buchem FSP van, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic carbonate systems of the Mediterranean and the Middle East. Geol Soc London Spec Publ 329:45–162

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum, Geologists, vol 1, pp 108–121

  • Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686

    Article  Google Scholar 

  • Esmaeily D, Bouchez JL, Siqueira R (2007) Magnetic fabrics and microstructures of the Jurassic Shah-Kuh granite pluton (Lut Block, Eastern Iran) and geodynamic inference. Tectonophysics 439:149–170

    Article  Google Scholar 

  • Esrafili-Dizaji B, Rahimpour-Bonab H, Mehrabi H, Afshin S, Harchegani FK, Shahverdi N (2015) Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran. Facies 61:14

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, pp 1–976

    Book  Google Scholar 

  • Gale AS, Hardenbol J, Hathway B, Kennedy WJ, Young JR, Phansalkar V (2002) Global correlation of Cenomanian (upper Cretaceous) sequences: evidence for Milankovitch control of sea level. Geology 30:291–294

    Article  Google Scholar 

  • Gili E, Masse J-P, Skelton PW (1995) Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr Palaeoclimatol Palaeoecol 118:245–267

    Article  Google Scholar 

  • Goldbeck EJ, Langer ME (2009) Biogeographic provinces and patterns of diversity in selected Upper Cretaceous (Santonian–Maastrichtian) larger Foraminifera. SEPM Spec Publ 93:187–232

    Google Scholar 

  • Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102:535–562

    Article  Google Scholar 

  • Goldring R (1999) Field palaeontology, 2nd edn. Longman, Singapore, p 191

    Google Scholar 

  • Götz S (2001) Rudisten-Assoziationen der keltiberischen Oberkreide SE-Spaniens: Paläontologie, Paläoökologie und Sediment-Organismus-Wechselwirkungen. Bayer Akad Wiss, Math-Naturw Kl Abh NF 171:1–112

    Google Scholar 

  • Götz S (2003) Biotic interaction and synecology in a Late Cretaceous coral—rudist biostrome of southeastern Spain. Palaeogeo Palaeoclimat Palaeoecol 193:125–138

    Article  Google Scholar 

  • Grotzinger JP (1986) Upward shallowing platform cycles: a response to 2.2 billion years of low-amplitude, high-frequency (Milankovitch band) sea level oscillations. Paleoceanography 1:403–416

    Article  Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jaquin T, de Graciansky P, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Chart 5: Cretaceous biochronostratigraphy. In: de Graciansky P, Hardenbol J, Jaquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc Econom Palaeont Mineral, Spec Publ 60

  • Hohenegger J (1999) Larger Foraminifera – Microscopical greenhouses indicating shallow-water tropical and subtropical environments in the present and past. In: Hatta A, Oki K (eds) Foraminifera as indicators of marine environments in the present and past. Kagoshima Research Center for the Pacific Islands, Occasional Papers, 32, pp 19–45

  • Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull Soc Géol France 168:491–505

    Google Scholar 

  • Kauffman EG (1973) Cretaceous Bivalvia. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, New York, pp 353–383

    Google Scholar 

  • Lindenberg HG, Görler K, Ibbeken H (1983) Stratigraphy, structure and orogenetic evolution of the Sabzevar Zone in the area of Oryan Khorasan, NE Iran. Geol Surv Iran Rep 51:120–143

    Google Scholar 

  • Mattei M, Cifelli F, Muttoni G, Zanchi A, Berra F, Mossavvari F, Eshraghi SA (2012) Neogene block rotation in central Iran: evidence from paleomagnetic data. Geol Soc Am Bull 124:943–956

    Article  Google Scholar 

  • Mattei M, Cifelli F, Muttoni G, Rashid H (2015) Post-Cimmerian (Jurassic–Cenozoic) palaeogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains. J Asian Earth Sci 102:92–101

    Article  Google Scholar 

  • Mehrabi H, Rahimpour-Bonab H, Enayati-Bidgoli AH, Navidtalab A (2014) Depositional environment and sequence stratigraphy of the Upper Cretaceous Ilam Formation in central and southern parts of the Dezful Embayment, SW Iran. Carbonates Evaporites 29:263–278

    Article  Google Scholar 

  • Mitchum RM Jr, Van Wagoner JC (1991) High-frequency sequences and their stacking patterns: sequence stratigraphic evidence of high-frequency eustatic cycles. Sedim Geol 70:131–160

    Article  Google Scholar 

  • Muttoni G, Mattei M, Balini M, Zanchi A, Gaetani M, Berra F (2009a) The drift history of Iran from the Ordovician to the Triassic. In: Brunet M-F, Wilmsen M, Granath J (eds) South Caspian to Central Iran basins. Geological Society, London, Special Publications, vol 312, pp 7–29

  • Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009b) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14:17–48

    Google Scholar 

  • Niebuhr B, Taherpour Khalil Abad M, Wilmsen M, Noorbakhsh Razmi J, Aryaei AA, Ashouri A (2016) First record of late Campanian ammonites from the Abderaz Formation of the Koppeh Dagh, northeastern Iran. Cretac Res 58:202–222

    Article  Google Scholar 

  • Ogg JG, Hinnov LA (2012) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–853

    Chapter  Google Scholar 

  • Omrani H, Moazzen M, Oberhänsli R, Altenberger U, Lange M (2013) The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction. Int J Earth Sci 102:1491–1512

    Article  Google Scholar 

  • Özer S, Khila A, Quaja M, Zargouni F (2018) First occurrence of rudists from the Coniacian–Santonian limestones of the Saharan platform, southern Tunisia: description, biostratigraphy and correlation. Cretac Res 84:69–87

    Article  Google Scholar 

  • Parlak O, Delaloye M (1999) Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301:145–158

    Article  Google Scholar 

  • Philip J, Floquet M (2000) Late Cenomanian (94.7–93.5). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys palaeogeographical maps. CCGM/CGMW, Paris, pp 129–136

    Google Scholar 

  • Pons JM, Vicens E (2006) Field guide to Pyrenean rudist bivalves. Org Divers Evol 6, Electr Suppl 16, part 3:1–18

    Google Scholar 

  • Pons JM, Vicens E, Pichardo Y, Aguilar J, Oviedo A, Alencáster G, García-Barrera P (2010) A new Early Campanian rudist fauna from San Luis Potosi in Mexico and its taxonomic and stratigraphic significance. J Paleont 84:974–995

    Article  Google Scholar 

  • Rahimpour-Bonab H, Mehrabi H, Enayati-Bidgoli AH, Omidvar M (2012a) Coupled imprints of tropical climate and recurring emersions on reservoir evolution of a mid-Cretaceous carbonate ramp, Zagros basin, SW Iran. Cretac Res 37:15–34

    Article  Google Scholar 

  • Rahimpour-Bonab H, Mehrabi H, Navidtalab A, Izadi-Mazidi E (2012b) Flow unit distribution and reservoir modeling in Cretaceous carbonates of the Sarvak Formation, Abteymour oilfield, Dezful Embayment, SW Iran. J Petrol Geol 35:213–236

    Article  Google Scholar 

  • Razin P, Taati F, Buchem FSP van (2010) Sequence stratigraphy of Cenomanian–Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: an outcrop reference model for the Arabian Plate. In: Buchem FSP van, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic carbonate systems of the Mediterranean and the Middle East. Geol Soc London Spec Publ 329:187–218

  • Robertson A, Parlak O, Ustaomer T (2012) Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petrol Geosci 18:381–404

    Article  Google Scholar 

  • Robles Salcedo R (2014) La familia Siderolitodae (macroforaminíferos del Cretácico superior): Architectura de la concha, bioestratigrafía, distribucón paleoambiental y paleobiogeografía. Unpubl PhD Thesis, Univ Autònoma de Barcelona, pp 1–183

  • Sanders D (1998) Upper Cretaceous ‘rudist formations’. Geol Paläont Mitt Innsbruck 23:37–59

    Google Scholar 

  • Sdzuy K, Monninger W (1985) Neue Modelle des “Jakobstabes”. N Jb Geol Paläont Mh 1985:300–320

    Google Scholar 

  • Seyed-Emami K, Bozorgnia F, Eftekhar-Nezhad J (1972) Der erste sichere Nachweis von Valanginien im nordöstlichen Zentaliran (Sabzewar-Gebiet). N Jb Geol Paläont Mh 1:52–67

    Google Scholar 

  • Skelton PW (2013) Rudist classification for the revised Bivalvia volumes of the ‘Treatise on Invertebrate Paleontology’. Carib J Earth Sci 45:9–33

    Google Scholar 

  • Skelton PW, Gili E (2002) Palaeoecological classification of rudist morphotypes. In: Sladić-Trifunović M (ed) Proceedings—first international conference on rudists, Beograd 1988. Mem Publ, Union Geol Soc Yugoslavia, pp 265–285

    Google Scholar 

  • Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117

    Article  Google Scholar 

  • Soffel H, Davoudzadeh M, Rolf C, Schmidt S (1996) New palaeomagnetic data from Central Iran and a Triassic palaeo-reconstruction. Geol Rundsch 85:293–302

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • Steuber T (2000) Skeletal growth rates of Upper Cretaceous rudistid bivalves: implications for carbonate production and organism-environment feedbacks. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions. Geological Society, London, Special Publications, vol 178, pp 1–32

  • Stow DAV (2005) Sedimentary rocks in the field, 2nd edn. Manson Publishing, London, pp 1–320

    Book  Google Scholar 

  • Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150

    Article  Google Scholar 

  • Tirrul R, Bell IR, Griffis RJ, Camp VE (1983) The Sistan suture zone of eastern Iran. Geol Soc Am Bull 94:134–150

    Article  Google Scholar 

  • Tröger K-A (2009) Katalog oberkretazischer Inoceramen. Geol Sax 55:1–188

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, pp 1–482

    Book  Google Scholar 

  • van Buchem FSP, Simmons MD, Droste HJ, Davies RB (2011) Late Aptian to Turonian stratigraphy of the eastern Arabian Plate—depositional sequences and lithostratigraphic nomenclature. Petrol Geosci 17:211–222

    Article  Google Scholar 

  • Vaziri SH, Senowbari-Daryan B, Kohansal-Ghadimvand N (2005) Lithofacies and microbiofacies of the Upper Cretaceous rocks (Sadr unit) of Nakhlak area in northeastern Nain, Central Iran. J Geosci Osaka City Univ 48:71–80

    Google Scholar 

  • Vaziri SH, Fürsich FT, Kohansal-Ghadimvand N (2012) Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area, Central Iran. Rev Mexic Cienc Geol 19:384–397

    Google Scholar 

  • Vodrážka R (2006) Entobia exogyrarum (Frič, 1883) from the Upper Cretaceous of the Bohemian Cretaceous Basin. Ichnos 13:1–3

    Article  Google Scholar 

  • Voigt S, Hay WW, Honing R, DeConto RM (1999) Biogeographic distribution of late Early to Late Cretaceous rudist-reefs in the Mediterranean as climate indicators. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous ocean–climate system. Geological Society of America, Boulder, Colorado, Special Paper vol 332, pp 91–104

  • Wendler JE, Meyers SR, Wendler I, Kuss J (2014) A million-year-scale control on Late Cretaceous sea-level. Newsl Stratigr 47:1–19

    Article  Google Scholar 

  • Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac Res 24:525–568

    Article  Google Scholar 

  • Wilmsen M, Neuweiler F (2008) Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco. Sedimentology 55:773–807

    Article  Google Scholar 

  • Wilmsen M, Wiese F, Seyed-Emami K, Fürsich FT (2005) First record and significance of Cretaceous (Turonian) ammonites from the Shotori Mountains, east-central Iran. Cretac Res 26:181–195

    Article  Google Scholar 

  • Wilmsen M, Fürsich FT, Majidifard MR (2012) Porosphaera globularis (Phillips, 1829) (Porifera, Calcarea) from the Maastrichtian Farokhi Formation of Central Iran. Cretac Res 33:91–96

    Article  Google Scholar 

  • Wilmsen M, Fürsich FT, Majidifard J (2013a) The Shah Kuh Formation, a latest Barremian—early Aptian carbonate platform of Central Iran (Khur area, Yazd Block). Cretac Res 39:183–194

    Article  Google Scholar 

  • Wilmsen M, Storm M, Fürsich FT, Majidifard MR (2013b) Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran). Acta Geol Polon 63:489–513

    Google Scholar 

  • Wilmsen M, Fürsich FT, Majidifard J (2015) An overview of the Cretaceous stratigraphy and facies development of the Yazd Block, western Central Iran. J Asian Earth Sci 102:73–91

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Geological Survey of Iran (GSI, Tehran) and the Darius programme (UPCM, Paris) for support of our studies in Iran. We furthermore acknowledge constructive reviews by H. Mehrabi (Tehran) and J.M. Pons (Barcelona) as well as the professional editorial handling by M.E. Tucker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wilmsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilmsen, M., Berensmeier, M., Fürsich, F.T. et al. A Late Cretaceous epeiric carbonate platform: the Haftoman Formation of Central Iran. Facies 64, 11 (2018). https://doi.org/10.1007/s10347-018-0523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0523-6

Keywords

Navigation