Skip to main content
Log in

Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Growth and survival of hyperthermophilic archaea in their extreme hydrothermal vent and subsurface environments are controlled by chemical and physical key parameters. This study examined the effects of elevated sulfide concentrations, temperature, and acidic pH on growth and survival of two hydrothermal vent archaea (Pyrococcus strain GB-D and Thermococcus fumicolans) under high temperature and pressure regimes. These two strains are members of the Thermococcales, a family of hyperthermophilic, heterotrophic, sulfur-reducing archaea that occur in high densities at vent sites. As actively growing cells, these two strains tolerated regimes of pH, pressure, and temperature that were in most cases not tolerated under severe substrate limitation. A moderate pH of 5.5–7 extends their survival and growth range over a wider range of sulfide concentrations, temperature and pressure, relative to lower pH conditions. T. fumicolans and Pyrococcus strain GB-D grew under very high pressures that exceeded in-situ pressures typical of hydrothermal vent depths, and included deep subsurface pressures. However, under the same conditions, but in the absence of carbon substrates and electron acceptors, survival was generally lower, and decreased rapidly when low pH stress was combined with high pressure and high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (1969) Standard methods for the examination of water and wastewater, including bottom sediments and sludge. American Public Health Association, Washington, DC, pp 604–609

  • Albers SV, Van de Vossenberg JLCM, Driessen AJM, Konings WN (2001) Bioenergetics and solute uptake under extreme conditions. Extremophiles 5:285–294

    PubMed  CAS  Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions, geophysical monograph 91. American Geophysical Union, Washington, DC, pp 85–114

    Google Scholar 

  • Ambroz HB, Bradshaw TK, Kemp TJ, Kornacka EM, Przbytniak GK (2001) Role of iron ions in damage to DNA: influence of ionizing radiation, UV light and H2O2. J Photoch Photobio A 142:9–18

    Article  CAS  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    PubMed  CAS  Google Scholar 

  • Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K (1997) Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol 168:1–7

    Article  PubMed  CAS  Google Scholar 

  • Canganella F, Gambacorta A, Kato C, Horikoshi K (2000) Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res 154:297–306

    PubMed  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    CAS  Google Scholar 

  • Comita PB, Gagosian RB, Williams PM (1984) Suspended particulate organic material from hydrothermal vent waters at 21°N. Nature 307:450–453

    Article  CAS  Google Scholar 

  • Cragg BA, Summit M, Parkes RJ (2000) Bacterial profiles in a sulfide mount (Site 1035) and an area of active fluid venting (Site 1036) in hot hydrothermal sediments from middle valley (Northwest Pacific). In: Zierenberg RA, Fouquet Y, Miller DJ, Normark WR (eds) Proc ODP Sci Results 169:1–18 [Online] Available from World Wide Web: <http://www-odp.tamu.edu/ publications/ 169_SR/VOLUME/CHAPTERS /SR169_02.PDF> [Cited 2005-09-20]

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1989) Data for biochemical research, 3rd edn. Clarendon Press, New York, pp 423–424

    Google Scholar 

  • Deming JW, Baross JA (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57:3219–3230

    Article  PubMed  CAS  Google Scholar 

  • Ding K, Seyfried Jr WE, Tivey MK, Bradley AM (2001) In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the main endeavour field, Juan de fuca ridge. Earth Planet Sci Lett 186:417–425

    Article  CAS  Google Scholar 

  • Edgcomb VE, Molyneaux SJ, Saito MA, Lloyd KG, Böer S, Wirsen CO, Atkins MS, Teske A (2004) Sulfide ameliorates metal toxicity in deep-sea hydrothermal vent archaea. Appl Environ Microbiol 70:2551–2555

    Article  PubMed  CAS  Google Scholar 

  • Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguénès G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north fiji basin. Int J Syst Bacteriol 46:1113–1119

    PubMed  CAS  Google Scholar 

  • Harmsen HJM, Prieur D, Jeanthon C (1997) Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol 63:2876–2883

    PubMed  CAS  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  • Holden JF, Baross JA (1995) Enhanced thermotolerance by hydrostatic pressure in the deep-sea hyperthermophile Pyrococcus strain ES4. FEMS Microbiol Ecol 18:27–34

    Article  CAS  Google Scholar 

  • Holden JF, Summit M, Baross JA (1998) Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol Ecol 25:33–41

    CAS  Google Scholar 

  • Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeaal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Takai K, Komatsu T, Kanamatsu T, Fujiioka K, Horikoshi K (2001) Archaeology of archaea: geomicrobiological record of pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles 5:385–392

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TL (1988) Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl Environ Microbiol 54:1203–1209

    PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1992) Comparative physiological studies on hyperthermophilic archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol 58:3472–3481

    PubMed  CAS  Google Scholar 

  • Kelley DS, Baross JA, Delaney RJ (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Plant Sci 30:385–491

    Article  CAS  Google Scholar 

  • Kormas KA, Smith DC, Edgcomb VE, Teske A (2003) Molecular analysis of deep subsurface microbial communities in nankai trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 45:115–125

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lee C, Yoon J (2003) High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H2O2 system. Chemosphere 51:963–971

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Edgcomb VE, Molyneaux SJ, Böer S, Wirsen CO, Atkins MS, Teske A (2005) Effect of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic archaea. Appl Environ Microbiol 71:6383–6387

    Article  PubMed  CAS  Google Scholar 

  • Marquis RE (1982) Microbial barobiology. Bioscience 32(4):267–271

    Article  Google Scholar 

  • Marteinnson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359

    Google Scholar 

  • Matsamura P, Keller DM, Marquis ER (1974) Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb Ecol 1:176–189

    Article  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–439

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Shah NN, Nelson CM, Ludlow JM, Clark DS (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 54:3039–3042

    PubMed  CAS  Google Scholar 

  • Millero FJ, Plese T, Fernandez M (1988) The dissociation of hydrogen sulfide in seawater. Limnol Oceanogr 33:269–274

    Article  CAS  Google Scholar 

  • Orem WH, Spiker EC, Kotra RK (1990) Organic matter in hydrothermal metal ores and hydrothermal fluids. Appl Geochem 5:125–134

    Article  Google Scholar 

  • Pledger RJ, Crump BC, Baross JA (1994) A barophilic response by two hyperhtermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal termperatures by by elevated pressure. FEMS Microbiol Ecol 14:233–242

    Article  Google Scholar 

  • Reysenbach AL, Deming JW (1991) Effects of hydrostatic pressure on growth of hyperthermophilic archaea from the juan de fuca ridge. Appl Environ Microbiol 57:1271–1274

    PubMed  Google Scholar 

  • Reysenbach AL, Holm NG, Hershberger K, Prieur D, Jeanthon C (1998) In search of a subsurface biosphere at a slow-spreading ridge. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific sesults Vol 158. Ocean Drilling Program, College Station, TX, pp 355–360

  • Shock EL (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins Life Evol B 20:331–367

    Article  CAS  Google Scholar 

  • Silva G, Oliveira S, Gomes CM, Pacheco I, Liu MY, Xavier AV, Teixeira M, LeGall J, Rodrigues-Pousada C (1999) Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. Eur J Biochem 259:235–243

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452:22–25

    Article  PubMed  CAS  Google Scholar 

  • Summit M, Baross JA (2001) A novel microbial habitat in the mid-ocean ridge subseafloor. Proc Natl Acad Sci 98:2158–2163

    Article  PubMed  CAS  Google Scholar 

  • Summit M, Baross JA (1998) Thermophilic subseafloor microorganisms from the 1996 north gorda ridge eruption. Deep-Sea Res II 45:2751–2766

    Article  Google Scholar 

  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004a) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282

    Article  CAS  Google Scholar 

  • Takai K, Inagaki F, Horikoshi K (2004b) Distribution of unusual archaea in subsurface biosphere. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical Monograph 144. American Geophysical Union, Washington, DC, pp 369–381

    Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629

    Article  PubMed  CAS  Google Scholar 

  • Trent JD, Yayanos AA (1985) Pressure effects on the temperature range for growth and survival of the marine bacterium Vibrio harveyi. Mar Biol 89:165–172

    Article  Google Scholar 

  • Ursby T, Adinolfi BS, Al-Karadaghi S, De Vendittis E, Bocchini V (1999) Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. J Mol Bio 286(1):189–205

    Article  CAS  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: Physical, chemical, biological and geological interactions, Geophysical Monograph 91. American Geophysical Union, Washington, DC, pp 222–247

    Google Scholar 

  • Von Damm KL (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu Rev Earth Plant Sci 18:173–204

    Article  Google Scholar 

  • Whitfield M (1975) Sea water as an electrolyte solution. In: Riley JP, Skirrow (eds) chemical oceanography, 2nd edn vol 1. Academic Press, New York, pp 44–171

  • Wirsen CO, Jannasch HW, Molyneaux SJ (1993) Chemosynthetic microbial acitivities at mid-atlantic ridge hydrothermal vent sites. J Geophys Res 98:9693–9703

    Article  CAS  Google Scholar 

  • Zillig W, Reysenbach AL (2001) Thermococci class nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn Vol 1. The archaea and the deeply branching and phototrophic bacteria. Springer, New York, pp 341–348

Download references

Acknowledgments

Support for this project was provided by NSF-LExEn grant (OCE-0085534) “Environmental tolerances of hyperthermophilic archaea” for A.T., S.M. S.B. and C.W, by the MBL NASA Astrobiology Institute grant (Environmental Genomes, NCC2-1054) to A.T. and S.M., and by grants from the Seaver Foundation and the URI NASA Astrobiology Institute (Subsurface Biospheres, NCC2-1275) to A.T.. V.E. was supported by a NRC postdoctoral fellowship in Astrobiology. M.S.A. was supported by a NSF postdoctoral fellowship in Microbial Biology. We thank Jill Erickson for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia P. Edgcomb.

Additional information

Communicated by J. Wiegel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgcomb, V.P., Molyneaux, S.J., Böer, S. et al. Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles 11, 329–342 (2007). https://doi.org/10.1007/s00792-006-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0043-0

Keywords

Navigation