Skip to main content

Advertisement

Log in

Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Microbial ecosystems beneath glaciers and ice sheets are thought to play an active role in regional and global carbon cycling. Subglacial sediments are assumed to be largely anoxic, and thus various pathways of organic carbon metabolism may occur here. We examine the abundance and diversity of prokaryotes in sediment beneath two glaciers (Lower Wright Glacier in Antarctica and Russell Glacier in Greenland) with different glaciation histories and thus with different organic carbon substrates. The total microbial abundance in the Lower Wright Glacier sediment, originating from young lacustrine sediment, was an order of magnitude higher (~8 × 106 cells per gram of wet sediment) than in Russell Glacier sediment (~9 × 105 cells g−1) that is of Holocene-aged soil origin. 4% of the microbes from the Russell Glacier sediment and 0.04–0.35% from Lower Wright Glacier were culturable at 10°C. The Lower Wright Glacier subglacial community was dominated by Proteobacteria, followed by Firmicutes. The Russell Glacier library was much less diverse and also dominated by Proteobacteria. Low numbers and diversity of both Euryarchaeota and Crenarchaeota were found in both sediments. The identified clones were related to bacteria with both aerobic and anaerobic metabolisms, indicating the presence of both oxic and anoxic conditions in the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aislabie JM, Chhour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Ayton J, Aislabie J, Barker GM, Saul D, Turner S (2010) Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol 12:689–703

    Article  PubMed  CAS  Google Scholar 

  • Bhatia M, Sharp M, Foght J (2006) Distinct bacterial communities exist beneath a high Arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845

    Article  PubMed  CAS  Google Scholar 

  • Bottrell S, Tranter M (2002) Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d’Arolla, Switzerland. Hydrol Process 16:2363–3468

    Article  Google Scholar 

  • Boyd EC, Skidmore M, Mitchell AC, Bakermans C, Peters JW (2010) Methanogenesis in subglacial sediments. Environ Microbiol Rep 2:685–692

    Article  CAS  Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:23–33

    Article  PubMed  CAS  Google Scholar 

  • Cheng SM, Foght JM (2007) Cultivation-independent and -dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59:318–330

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle (distributed by the author)

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47:329–340

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  PubMed  CAS  Google Scholar 

  • Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    PubMed  Google Scholar 

  • Hodson A, Roberts TJ, Engvall A-C, Holmén K, Mumford P (2010) Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic. Biogeochemistry 98:171–184

    Article  CAS  Google Scholar 

  • Høj L, Olsen RA, Torsvik VL (2008) Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J 2:27–48

    Article  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Kaštovská K, Stibal M, Šabacká M, Černá B, Šantrůčková H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol 30:277–287

    Article  Google Scholar 

  • Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic Ice Sheet. Environ Microbiol 11:609–615

    Article  PubMed  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Harder J, Wagner D (2008) Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int Microbiol 11:195–202

    PubMed  CAS  Google Scholar 

  • Mancuso CA, Franzmann PD, Burton HR, Nichols PD (1990) Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses. Microb Ecol 19:73–95

    Article  CAS  Google Scholar 

  • Mergaert J, Cnockaert MC, Swings J (2002) Fulvimonas soli gen. nov., sp. nov., a γ-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 52:1285–1289

    Article  PubMed  CAS  Google Scholar 

  • Mergaert J, Cnockaert MC, Swings J (2003) Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(ε-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. Int J Syst Evol Microbiol 53:1961–1966

    Article  PubMed  CAS  Google Scholar 

  • Mosier AC, Murray AE, Fritsen CH (2007) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59:274–288

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Sakane T, Yokota A (1996) Transfer of “Pseudomonas riboflavina” (Foster 1944), a Gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Evol Microbiol 46:16–22

    CAS  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122

    Article  PubMed  Google Scholar 

  • Nicol GW, Tscherko D, Chang L, Hammesfahr U, Prosser JI (2006) Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Environ Microbiol 8:1382–1393

    Article  PubMed  CAS  Google Scholar 

  • Pouliot J, Galand PE, Lovejoy C, Vincent WF (2009) Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environ Microbiol 11:687–699

    Article  PubMed  CAS  Google Scholar 

  • Pradhan S, Srinivas TNR, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GSN, Shivaji S (2010) Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 14:377–395

    Article  PubMed  CAS  Google Scholar 

  • Raiswell R, Benning LG, Davidson L, Tranter M, Tulaczyk S (2009) Schwertmannite in wet, acid, and oxic microenvironments beneath polar and polythermal glaciers. Geology 37:431–434

    Article  CAS  Google Scholar 

  • Sangkhobol V, Skerman VBD (1981) Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 31:285–293

    Article  Google Scholar 

  • Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Ascarrunz N, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47:673–681

    Article  PubMed  Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110

    Article  CAS  Google Scholar 

  • Sjöling S, Cowan DA (2003) High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7:275–282

    Article  PubMed  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community composition in two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F (2009) Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol Biochem 41:2069–2074

    Article  CAS  Google Scholar 

  • Stibal M, Tranter M, Benning LG, Řehák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178

    Article  PubMed  CAS  Google Scholar 

  • Stibal M, Wadham JL, Lis GP, Telling J, Pancost RD, Dubnick A, Sharp MJ, Lawson EC, Butler CEH, Hasan F, Tranter M, Anesio AM (2012) Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biol (in review)

  • Tavormina PL, Ussler W III, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 74:3985–3995

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254

    Article  PubMed  CAS  Google Scholar 

  • Wadham JL, Bottrell SH, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355

    Article  CAS  Google Scholar 

  • Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Global Biogeochem Cycles 22:GB2021. doi:10.1029/2007GB002951

  • Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis GP, Lawson E, Ridgwell A, Dubnick A, Sharp MJ, Anesio AM, Butler C (2012) Large methane reservoirs beneath Antarctica? (submitted)

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed  CAS  Google Scholar 

  • White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306

    Article  PubMed  CAS  Google Scholar 

  • Wiegel J, Tanner R, Rainey FA (2006) An introduction to the family Clostridiaceae. Prokaryotes 4:654–678

    Article  Google Scholar 

  • Willems A, De Ley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov. for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450

    Article  Google Scholar 

  • Yde JC, Finster KW, Raiswell R, Steffensen JP, Heinemeier J, Olsen J, Gunnlaugsson HP, Nielsen OB (2010) Basal ice microbiology at the margin of the Greenland ice sheet. Ann Glaciol 51(56):71–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the UK Natural Environment Research Council (grant NE/E004016/1 to J.L.W.) and the Higher Education Commission of Pakistan (Post Doctoral Fellowship Phase II, Batch III, to F.H.). Sample collection in Antarctica was supported by the Natural Sciences and Engineering Research Council of Canada, and by Antarctica New Zealand. M.J.S. thanks Dr Sean Fitzsimons (University of Otago) for the opportunity to work in Antarctica, and assistance with sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Stibal.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stibal, M., Hasan, F., Wadham, J.L. et al. Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. Extremophiles 16, 255–265 (2012). https://doi.org/10.1007/s00792-011-0426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-011-0426-8

Keywords

Navigation