Skip to main content
Log in

A nonparametric method for producing isolines of bivariate exceedance probabilities

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We present a method for drawing isolines indicating regions of equal joint exceedance probability for bivariate data. The method relies on bivariate regular variation, a dependence framework widely used for extremes. The method we utilize for characterizing dependence in the tail is largely nonparametric. The extremes framework enables drawing isolines corresponding to very low exceedance probabilities and may even lie beyond the range of the data; such cases would be problematic for standard nonparametric methods. Furthermore, we extend this method to the case of asymptotic independence and propose a procedure which smooths the transition from hidden regular variation in the interior to the first-order behavior on the axes. We propose a diagnostic plot for assessing the isoline estimate and choice of smoothing, and a bootstrap procedure to visually assess uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, J.-J., Einmahl, J.H., De Haan, L.: Estimation of extreme risk regions under multivariate regular variation. Ann. Stat. 39(3), 1803–1826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values Springer Series in Statistics. Springer-Verlag London Ltd., London (2001)

    MATH  Google Scholar 

  • Cooley, D.: Return periods and return levels under climate change. In: Extremes in a Changing Climate, pp. 97–114. Springer (2013)

  • Coles, S., Tawn, J.: Statistical methods for multivariate extremes: An application to structural design. Appl. Stat. 43(1), 1–48 (1994)

    Article  MATH  Google Scholar 

  • Cooley, D., Hunter, B., Smith, R.: Univariate and multivariate extremes for the environmental sciences. In: Gelfand, A., RL, S. (eds.) Environmental Statistics, pp 153–180. CRC Press, Boca Raton (2019)

  • Das, B., Resnick, S.: Hidden regular variation: Generation and detection. 1:1–27. arXiv:1403.5774v1 (2014)

  • de Haan, L., de Ronde, J.: Sea and wind: Multivariate extremes at work. Extremes 1, 7–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Dunn, R.J., Willett, K.M., Thorne, P.W., Woolley, E.V., Durre, I., Dai, A., Parker, D.E., Vose, R.E.: HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Clim. Past 8, 1649–1679 (2012)

    Article  Google Scholar 

  • Einmahl, J.H., Li, J., Liu, R.Y.: Thresholding events of extreme in simultaneous monitoring of multiple risks. J. Am. Stat. Assoc. 104(487), 982–992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Givens, G.H., Hoeting, J.A.: Computational Statistics, vol. 710. Wiley (2012)

  • Heffernan, J.E., Tawn, J.A.: A conditional approach for multivariate extreme values. J. R. Statist. Soc. Series B 66, 497–546 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, B.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Huser, R., Wadsworth, J.L.: Modeling spatial processes with unknown extremal dependence class. J. Am. Stat. Assoc. 0(0), 1–11 (2018)

    Google Scholar 

  • Ledford, A.W., Tawn, J.A.: Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Ledford, A., Tawn, J.: Modelling dependence within joint tail regions. J. R. Statist. Soc. Series B 59(2), 475–499 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, R., Yang, L.: Kernel estimation of multivariate cumulative distribution function. J. Nonparametr. Stat. 20(8), 661–667 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Marcon, G., Naveau, P., Padoan, S.A.: A semi-parametric stochastic generator for bivariate extreme events. Stat 6(1), 184–201 (2017)

    Article  MathSciNet  Google Scholar 

  • Masood, I., Majid, Z., Sohail, S., Zia, A., Raza, S.: The deadly heat wave of Pakistan, June 2015. Int. J. Occup. Environ. Med. 6, 672–247 (2015)

    Article  Google Scholar 

  • Nelsen, R.: An Introduction to Copulas, 2nd edn. Lecture Notes in Statistics No. 139. Springer, New York (2006)

    Google Scholar 

  • Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer, New York (1987)

    Book  MATH  Google Scholar 

  • Resnick, S.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5(4), 303–336 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick, S.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling Springer Series in Operations Research and Financial Engineering. Springer, New York (2007)

    Google Scholar 

  • Salvadori, G., De Michele, C.: Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour. Res. 40, 12 (2004)

    Article  Google Scholar 

  • Stephenson, A.G.: evd: Extreme value distributions. R News 2(2), 31–32 (2002)

    Google Scholar 

  • Wadsworth, J., Tawn, J.: A new representation for multivariate tail probabilities. Bernoulli 19(5B), 2689–2714 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Wadsworth, J., Tawn, J.A., Davison, A., Elton, D.M.: Modelling across extremal dependence classes. J. R. Stat. Soc.: Series B (Stat. Methodol.) 79(1), 149–175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Weller, G., Cooley, D.: A sum characterization of hidden regular variation with likelihood inference via expectation–maximization. Biometrika 101(1), 17–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Cooley, Thibaud, and Castillo received support from the project “EaSM 2: Advancing extreme value analysis of high impact climate and weather events” NSF-DMS-1243102. Wehner’s contributions to this work are supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cooley.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We show that the smoothed scaling procedure in Section 4 preserves the requirement that isolines of exceedance probabilities must have negative slopes.

Assume the estimated survival function is strictly decreasing, i.e., if x1 = (x1,1,x1,2)≠x2 = (x2,1,x2,2), x1,1x2,1, and x1,2x2,2, then \(\hat {\bar F}_{\boldsymbol X}(\boldsymbol x_{1}) > \hat {\bar F}_{\boldsymbol X}(\boldsymbol x_{2})\). We first show that it follows that any isoline \(\hat \ell _{\boldsymbol X}(p)\) must have a negative slope. Let x1 and x2 be two distinct locations on \(\hat \ell _{\boldsymbol X}(p)\). WLOG, assume x2,2x1,2 ≥ 0 and x2,1x1,1 ≥ 0, implying the slope is not negative. This implies x2,2x1,2 and x2,1x1,1, but \(\hat {\bar F}_{\boldsymbol X}(\boldsymbol x_{1}) = \hat {\bar F}_{\boldsymbol X}(\boldsymbol x_{2})\), which is a contradiction.

As the transformation to Fréchet scale is monotonic, \(\hat \ell _{\boldsymbol Z}(p)\) has negative slopes.

Let \(\boldsymbol z_{1}^{(proj)}, \boldsymbol z_{2}^{(proj)}\) be any two points in \(\hat \ell _{\boldsymbol Z}(p_{proj})\). Let s = pbase/pproj. Let \(\boldsymbol z_{1}^{(base)}, \boldsymbol z_{2}^{(base)}\) be the points in \(\hat \ell _{\boldsymbol Z}(p_{base})\) such that \(\boldsymbol z_{i}^{(proj)} = (s^{\eta _{1}(\boldsymbol z_{i}^{(base)})} z^{(base)}_{i,1},\)\( s^{\eta _{2}(\boldsymbol z_{i}^{(base)})} z^{(base)}_{i,2})\) for i = 1, 2. WLOG assume \(z^{(base)}_{2,2} < z^{(base)}_{1,2}\) and \(z^{(base)}_{2,1} > z^{(base)}_{1,1}\).

Note that since \(z^{(base)}_{2,1} > z^{(base)}_{1,1}\), \(\eta _{1}(\boldsymbol z^{(base)}_{2}) > \eta _{1}(\boldsymbol z^{(base)}_{1})\), and likewise since \(z^{(base)}_{2,2} < z^{(base)}_{1,2}\), \(\eta _{2}(\boldsymbol z^{(base)}_{2}) < \eta _{2}(\boldsymbol z^{(base)}_{1})\). Hence,

$$ z^{(proj)}_{2,2} \!- z^{(proj)}_{1,2} = s^{\eta_{2}(\boldsymbol z_{2}^{(base)})} z^{(base)}_{2,2} \!- s^{\eta_{2}(\boldsymbol z_{1}^{(base)})} z^{(base)}_{1,2} \!<\! s^{\eta_{2}(\boldsymbol z_{1}^{(base)})} (z^{(base)\!}_{2,2} - z^{(base)}_{1,2}) \!<\! 0, $$

and

$$ z^{(proj)}_{2,1} - z^{(proj)}_{1,1} = s^{\eta_{1}(\boldsymbol z_{2}^{(base)})} z^{(base)}_{2,1} \!- s^{\eta_{1}(\boldsymbol z_{1}^{(base)})} z^{(base)}_{1,1} \!>\! s^{\eta_{1}(\boldsymbol z_{1}^{(base)})} (z^{(base)}_{2,1} \!- z^{(base)}_{1,1}) \!>\! 0. $$

Thus, the slope between any two points on \(\hat \ell _{\boldsymbol Z}(p_{proj})\) is negative, and since the marginal transformation is monotonic, the slope between any two points on \(\hat \ell _{\boldsymbol X}(p_{proj})\) is negative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooley, D., Thibaud, E., Castillo, F. et al. A nonparametric method for producing isolines of bivariate exceedance probabilities. Extremes 22, 373–390 (2019). https://doi.org/10.1007/s10687-019-00348-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-019-00348-0

Keywords

AMS 2000 Subject Classifications

Navigation