Skip to main content
Log in

Effects of non-axisymmetric endwall contouring and film cooling on the passage flowfield in a linear turbine cascade

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The time-resolved flowfield is measured in the passage of a linear turbine cascade to show the effects of endwall film cooling and non-axisymmetric endwall contouring on the passage secondary flows. A particle image velocimetry system is used in three measurement planes: the plane at the exit of the passage and two streamwise planes along the blade suction side. In the downstream half of the passage, the passage vortex moves away from the endwall toward the midspan, but closely follows the profile of the blade suction side. The secondary velocity vectors and vorticity fields in the passage exit plane indicate the large size of the passage vortex. The measured velocities in the streamwise measurement planes reveal the trajectory of the passage vortex as well as steep gradients in the direction normal to the blade surface. The passage vortex can also be identified by elevated flow unsteadiness as reported by turbulent kinetic energy levels. When passage film cooling is added, the size of the passage vortex, secondary velocities, and exit plane turbulent kinetic energy are all increased. Endwall contouring has the opposite effect, reducing the passage vortex size, the secondary velocities, and exit plane turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

c :

Coolant upstream of impingement plate

C ax :

Axial chord length

D :

Hole diameter

H :

Impingement gap height

M :

Blowing ratio (ρ c U c/ρ U )

Ma :

Mach number

P :

Pressure

PIV:

Particle image velocimetry

p :

Pitch length

Re :

Reynolds number (ρ U C ax/μ )

S :

Blade span

s :

Static or streamwise coordinate

T :

Temperature

tke:

Turbulent kinetic energy \(\left( {3/4\left[ {\left( {u^{{\prime }} } \right)^{2} + \left( {v^{{\prime }} } \right)^{2} } \right]} \right)\)

U :

Velocity

U inviscid :

Average inviscid velocity vector

U meas :

Average measured velocity vector

U sec :

Secondary velocity vector (U meas − U inviscid)

\(u^{{\prime }}\) :

Fluctuating velocity

x :

Blade axial coordinate

y :

Blade pitchwise coordinate

z :

Blade spanwise coordinate

δ :

Boundary layer thickness (99 %)

μ :

Dynamic viscosity

ρ :

Density

:

Mainstream conditions at the cascade inlet

References

  • DaVis (2012) DaVis 8.1.4. LaVision Inc., Ypsilanti, Michigan

  • Goldstein RJ, Spores RA (1988) Turbulent transport on the endwall in the region between adjacent turbine blades. J Heat Transf 110:862–869. doi:10.1115/1.3250586

    Article  Google Scholar 

  • Harvey NW, Rose MG, Taylor MD, Shahpar S, Hartland J, Gregory-Smith DG (2000) Nonaxisymmetric turbine end wall design: part I—three-dimensional linear design system. J Turbomach 122:278. doi:10.1115/1.555445

    Article  Google Scholar 

  • Kang MB, Thole KA (2000) Flowfield measurements in the endwall region of a stator vane. J Turbomach 122:458. doi:10.1115/1.1303703

    Article  Google Scholar 

  • Kang MB, Kohli A, Thole KA (1999) Heat transfer and flowfield measurements in the leading edge region of a stator vane endwall. J Turbomach 121:558. doi:10.1115/1.2841351

    Article  Google Scholar 

  • Knezevici DC, Sjolander SA, Praisner TJ, Allen-Bradley E, Grover EA (2010) Measurements of secondary losses in a turbine cascade with the implementation of nonaxisymmetric endwall contouring. J Turbomach 132:011013. doi:10.1115/1.3072520

    Article  Google Scholar 

  • Langston LS, Nice ML, Hooper RM (1977) Three-dimensional flow within a turbine cascade passage. J Eng Power 99:21. doi:10.1115/1.3446247

    Article  Google Scholar 

  • Lawson SA, Thole KA (2012) Simulations of multiphase particle deposition on endwall film-cooling. J Turbomach 134:011003. doi:10.1115/1.4002962

    Article  Google Scholar 

  • Lynch SP (2011) The effect of endwall contouring on boundary layer development in a turbine blade passage (doctoral). Virginia Polytechnic Institute and State University

  • Lynch SP, Thole KA (2015) Comparison of the three-dimensional boundary layer on flat versus contoured turbine endwalls. In: Proceedings of ASME Turbo Expo., pp GT2015–43298. doi:10.1115/GT2015-43298

  • Lynch SP, Thole KA, Kohli A, Lehane C (2011a) Heat transfer for a turbine blade with nonaxisymmetric endwall contouring. J Turbomach 133:011019. doi:10.1115/1.4000542

    Article  Google Scholar 

  • Lynch SP, Thole KA, Kohli A, Lehane C (2011b) Computational predictions of heat transfer and film-cooling for a turbine blade with nonaxisymmetric endwall contouring. J Turbomach 133:041003. doi:10.1115/1.4002951

    Article  Google Scholar 

  • Mensch A, Thole KA (2014) Overall effectiveness of a blade endwall with jet impingement and film cooling. J Eng Gas Turbine Power 136:031901. doi:10.1115/1.4025835

    Article  Google Scholar 

  • Mensch A, Thole KA (2015) Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall. Int J Heat Mass Transf 82:66–77. doi:10.1016/j.ijheatmasstransfer.2014.10.076

    Article  Google Scholar 

  • Mensch A, Thole KA (in press) Overall effectiveness and flowfield measurements for an endwall with nonaxisymmetric contouring. J Turbomach. doi:10.1115/1.4031962

  • Mensch A, Thole KA, Craven BA (2014) Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating. J Turbomach 136:121003. doi:10.1115/1.4028233

    Article  Google Scholar 

  • Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17. doi:10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  • Praisner TJ, Allen-Bradley E, Grover EA, Knezevici DC, Sjolander SA (2007) Application of non-axisymmetric endwall contouring to conventional and high-lift turbine airfoils. In: Proceedings of ASME Turbo Expo. pp GT2007–27579. doi:10.1115/GT2007-27579

  • Pu J, Yu J, Wang J, Yang W, Zhang Z, Wang L (2014) An experimental investigation of secondary flow characteristics in a linear turbine cascade with upstream converging slot-holes using TR-PIV. Exp Therm Fluid Sci 59:56–71. doi:10.1016/j.expthermflusci.2014.07.014

    Article  Google Scholar 

  • Radomsky RW, Thole KA (2000) High free-steam turbulence effects on endwall heat transfer for a gas turbine stator vane. J Turbomach 122:699. doi:10.1115/1.1312807

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (eds) (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Wang HP, Olson SJ, Goldstein RJ, Eckert ERG (1997) Flow visualization in a linear turbine cascade of high performance turbine blades. J Turbomach 119:1. doi:10.1115/1.2841006

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) through the University Turbine Systems Research (UTSR) program. Any opinions, findings, conclusions, or recommendations expressed herein are solely those of the authors and do not necessarily reflect the views of the DOE. The writers would like to thank Dr. Stephen Lynch of the Pennsylvania State University, Dr. Brent Craven of the Food and Drug Administration (FDA), and Robin Ames of DOE-NETL for their communication and support regarding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Mensch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensch, A., Thole, K.A. Effects of non-axisymmetric endwall contouring and film cooling on the passage flowfield in a linear turbine cascade. Exp Fluids 57, 1 (2016). https://doi.org/10.1007/s00348-015-2093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2093-5

Keywords

Navigation