Skip to main content
Log in

The response of surface buoyancy flux-driven convection to localized mechanical forcing

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We present laboratory experiments in which both a buoyancy and mechanical forcing are imposed on the surface of a rectangular tank filled with freshwater. The buoyancy forcing is generated by a saltwater source at the surface that drives a sinking half-line plume along one endwall, and the mechanical forcing is generated by a continuous flow of freshwater across the surface of the tank. A steady-state circulation is achieved when the advection of salt by the plume is matched by the diffusion of salt through the upper boundary. The surface stress drives flow in the same direction as the plume, resulting in a convective cell whose depth is determined by the interplay of the two forcings. When the surface stress is relatively weak, the steady-state flow is described by a high-Rayleigh number ‘recycling box’ model for horizontal convection (Hughes et al. in J Fluid Mech 581:251–276, 2007). Once the stress is strong enough to overturn the stratified waters, a region of localized mixing develops. The immediate consequence of this regional turbulence is a net input of stabilizing buoyancy in the form of fresher water into the plume, which renders it too weak to penetrate to the bottom boundary. In general, the plume is unable to recover a full-depth circulation within the experiment time frame. The resulting flow can be described by the recycling box model with a spatially varying turbulent diffusivity parameterized by the characteristics of the turbulent eddy that develops in the mixing region. This work applies experimental techniques to show that, with adequate mechanical forcing, a buoyancy-driven circulation will develop localized mixing that significantly alters the overall structure and density distribution of the circulation for relatively long timescales. The experimental results corroborate the recycling box model as a valid descriptor of the flow structure in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baines WD, Turner JS (1969) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 37:51–80

    Article  Google Scholar 

  • Beardsley RC, Festa JF (1972) A numerical model of convection driven by a surface stress and non-uniform horizontal heating. J Phys Oceanogr 2:444–455

    Article  Google Scholar 

  • Benítez J (2009) Principles and modern applications of mass transfer operations, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Chiu-Webster S, Hinch EJ, Lister JR (2008) Very viscous horizontal convection. J Fluid Mech 611:395–426

    Article  MathSciNet  Google Scholar 

  • Dalziel Research Partners (2008) DigiFlow user guide, version 3.0. Dalziel Research Partners, Cambridge, UK

    Google Scholar 

  • Dewar WK, Bingham RJ, Iverson RL, Nowacek DP, St Laurent LC, Wiebe PH (2006) Does the marine biosphere mix the ocean? J Mar Res 64:541–561

    Article  Google Scholar 

  • Gayen B, Griffiths RW, Hughes GO, Saenz JA (2012) Energetics of horizontal convection. J Fluid Mech Rapids 716:R10-1–R10-11

    MATH  Google Scholar 

  • Gayen B, Griffiths RW, Hughes GO (2014) Stability transitions and turbulence in horizontal convection. J Fluid Mech 751:698–724

    Article  Google Scholar 

  • Hazewinkel J, Paparella F, Young WR (2012) Stressed horizontal convection. J Fluid Mech 692:317–331

    Article  Google Scholar 

  • Hopfinger EJ, Linden PF (1982) Formation of thermoclines in zero-mean-shear turbulence subjected to a stabilizing buoyancy flux. J Fluid Mech 114:157–173

    Article  Google Scholar 

  • Hughes GO, Griffiths RW (2006) A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model 12:46–79

    Article  Google Scholar 

  • Hughes GO, Griffiths RW (2008) Horizontal convection. Annu Rev Fluid Mech 40:185–208

    Article  MathSciNet  Google Scholar 

  • Hughes GO, Griffiths RW, Mullarney JC, Peterson WH (2007) A theoretical model for horizontal convection at high rayleigh number. J Fluid Mech 581:251–276

    Article  MathSciNet  Google Scholar 

  • Ilicak M, Vallis GK (2012) Simulations and scaling of horizontal convection. Tellus A 64(18):377

    Google Scholar 

  • Kanda I (2002) Conductivity measurement system. Cambridge, UK

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001

    Article  Google Scholar 

  • Kundu PK, Cohen IM, Dowling DR (2012) Fluid mechanics, 5th edn. Elsevier Inc, Amsterdam

    MATH  Google Scholar 

  • Ledwell JR (2017) Comment on “Abyssal upwelling and downwelling driven by near-boundary mixing”. J Phys Oceanogr 48:739–748

    Article  Google Scholar 

  • Linden PF (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238

    Article  Google Scholar 

  • Manins PC (1979) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 91(4):765–781

    Article  Google Scholar 

  • McDougall TJ, Ferrari R (2018) Reply to “Comment on ‘Abyssal upwelling and downwelling driven by near-boundary mixing”’. J Phys Oceanogr 48:749–753

    Article  Google Scholar 

  • Mullarney JC, Griffiths RW, Hughes GO (2004) Convection driven by differential heating at a horizontal boundary. J Fluid Mech 516:181–209

    Article  Google Scholar 

  • Nayar K, Sharqawy M, Banchik L (2016) Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390:1–24

    Article  Google Scholar 

  • Paparella F, Young WR (2002) Horizontal convection is non-turbulent. J Fluid Mech 466:205–214

    Article  MathSciNet  Google Scholar 

  • Pierce DW, Rhines PB (1996) Convective building of a pycnocline: laboratory experiments. J Phys Oceanogr 26:176–190

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rossby T (1965) On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Res 12:9–16

    Google Scholar 

  • Rossby T (1998) Numerical experiments with a fluid heated non-uniformly from below. Tellus 50A:242–257

    Article  Google Scholar 

  • Sandström JW (1908) Dynamische versuche mit meerwasser. Ann Hydrogr Marit Meteorol 36:6–23

    Google Scholar 

  • Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the atlantic overturning circulation. Nature 434:628–633

    Article  Google Scholar 

  • Sharqawy MH, JHL V, Zubair SM (2010) Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat 16:354–380

    Article  Google Scholar 

  • Stewart KD, Hughes GO, Griffiths RW (2012) The role of turbulent mixing in an overturning circulation maintained by surface buoyancy forcing. J Phys Oceanogr 42:1907–1922

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Thielicke W (2014) The flapping flight of birds—analysis and application. PhD thesis, Rijksuniversiteit Groningen

  • Toggweiler JR, Samuels B (1997) On the ocean’s large-scale circulation near the limit of no vertical mixing. J Phys Oceanogr 28:1832–1852

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Vreugdenhil CA, Hogg AM, Griffiths RW, Hughes GO (2016) Adjustment of the meridional overturning circulation and its dependence on depth of mixing. J Phys Oceanogr 46:731–747

    Article  Google Scholar 

  • Wang W, Huang RX (2005) An experimental study on thermal circulation driven by horizontal differential heating. J Fluid Mech 540:49–73

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) A universal detection criterion for the median test. Exp Fluids 39:1096–1100

    Article  Google Scholar 

  • Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. Am Meteorol Soc 38:1091–1106

    Google Scholar 

  • Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Clim 18:4374–4380

    Article  Google Scholar 

  • Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the ocean. Annu Rev Fluid Mech 36:281–314

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Eugene Pawlak for the use of his laser equipment, and Thomas Chalfant and Nicholas Busan for their assistance in building experiment components. We are also extremely grateful to Drs. Kial Stewart, Ross Griffiths, and James Rottman for thoughtful discussion and insight on the subject matter. This work was funded by National Science Foundation awards OCE-0926481 and OCE-1259580.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna E. Matusik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matusik, K.E., Llewellyn Smith, S.G. The response of surface buoyancy flux-driven convection to localized mechanical forcing. Exp Fluids 60, 79 (2019). https://doi.org/10.1007/s00348-019-2722-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-019-2722-5

Navigation