Skip to main content
Log in

Three-segment electrodiffusion probes for measuring velocity fields close to a wall

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Three-segment electrodiffusion probes embedded in a wall allow to determine simultaneously the three kinematic parameters of flow close to the probe surface: the flow directionθ, the wall shear rateq, and the normal velocity coefficientA,v z = −A z 2. A well-controlled three-dimensional flow, generated by a rotating disk, was used to demonstrate the capabilities of this new kind of electrodiffusion probes by comparing experimental results with the prediction based on the well-known hydrodynamical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

normal flow coefficient, Eq. (1)

A :

axis of the adjustment rod, Fig. 2

c 0 :

concentration of depolarizer (mol/m3)

D :

diffusivity of depolarizer (m2/s)

E :

correction of total current on normal flow effect

e x :

reference direction of the probe, Figs. 1 and 3

F :

Faraday constant (F = 96,464 C/mol)

F s :

normalized directional characteristic fors-th segment

f sm ,g sm :

Fourier coefficients of directional characteristics, Eq. (4) and Table 3

h m :

corrections of Fourier coefficients on normal flow effect, Eqs. (4) and (7)

i s :

limiting diffusion current throughs-th segment (A)

i tot (r):

total current through the probe in dependence on its eccentricity (A)

K :

transport coefficient, Eqs. (3) and (5)

n :

number of electrons involved in redox reaction

O :

axis of the rotating disk, Fig. 2

P :

centre of the probe, Fig. 2

q :

magnitude of vectorial wall shear rate (s-1)

q x ,q y :

components of vectorial wall shear rate

Q :

ratio of the currents in an eccentric and the central position of the probe, Eq. (15)

r :

radial coordinate, eccentricity of the probe

r A :

eccentricity of the adjustment rod (r A =Ō Ā, Fig. 2)

r, Φ, z :

polar coordinates on the rotating disk

R :

effective radius of the probe (R = 0.337 mm)

S :

macroscopic area of the probe (S = 0.357 mm2)

x, y, z :

Cartesian coordinates moving with the probe

α :

adjustment angle, Figs. 2 and 3

β :

angle included between local radius-vectorō ¯P of the probe and local direction of flow, Fig. 3

θ :

angle included between reference directione x of the probe and local direction of flow, Fig. 3

θ 0 :

theoretical prediction ofθ, Eq. (11)

x 0 :

theoretical prediction ofx, Eq. (14)

x exp x :

calculated from experimental data using Eq. (4)

v :

kinematic viscosity (m2/s)

σ :

angle implied between gradient ofq and direction of flow, Eq. (8)

Ω :

angular speed of the rotating disk (rad/s)

References

  • Chin, D. T.; Litt, M. 1972: Mass transfer to point electrodes on the surface of a rotating disk. J. Electrochem. Soc. 119, 1338–1343

    Google Scholar 

  • Hanratty, T. J.; Campbell, J. A. 1983: Measurement of wall shear stress. In: Fluid mechanics measurements (ed. Goldstein, R. J.). pp 559–615

  • Levich, V. G. 1962: Physicochemical hydrodynamics. New York: Prentice Hall

    Google Scholar 

  • Menzel, Th.; Sobolik, V.; Wein, O.; Onken, U. 1987a: Segmentierte Elektrodiffusionssonden zur Messung des Wandschergeschwindigkeitsvektors. Chem.-Ing.-Tech. 59, 492–493

    Google Scholar 

  • Menzel, Th.; Sobolik, V.; Onken, U.; Čermák, J. 1987b: Electrodiffusional probe for direction specific shear rate measurement. 9th Internat. Congress CHISA '87, Prague, Czechoslovakia

  • Mollet, L.; Dumargue, P.; Daguenet, M.; Bodiot, D. 1974: Calcul du flux limite de diffusion sur une microélectrode de section circulaire — équivalence avec une électrode de section rectangulaire. Vérification experimentale dans le cas du disque tournant en regime laminaire. Electrochim. Acta 19, 841–844

    Google Scholar 

  • Nakoryakov, V. E.; Burdukov, A. P.; Kashinsky, O. N.; Geshev, P. I. 1986: Electrodiffusion method of investigation of turbulent flows. Novosibirsk: Institute of Thermophysics (in Russian)

    Google Scholar 

  • Pauli, J.; Menzel, Th.; Onken U. 1989: Directional specific shear rate measurements in gas-liquid two-phase flow. Chem. Eng. Process, (in press)

  • Py, B.; Gosse, J. 1969: Sur la réalisation d'une sonde polarographique sensible à la direction de l'écoulement. C. R. Acad. Sci. 269, 401–405

    Google Scholar 

  • Robertson, B.; Tribollet, B.; Deslouis, C. 1988: Measurement of diffusion coefficients by DC and EHD electrochemical methods. J. Electrochem. Soc. 135, 2279–2284

    Google Scholar 

  • Schlichting, H. 1960: Boundary layer theory. New York: McGraw-Hill

    Google Scholar 

  • Sobolik, V.; Mitschka, P.; Menzel, Th. 1986: Method of manufacture of segmented probe with circular cross-section. Czechoslovak Pat. AO 262 823

  • Wein, O.; Pokryvaylo, N. A. 1982: Convective diffusion to a rotating sphere electrode. Inzh. Phys. Zhurn. 43, 448–455 (in Russian)

    Google Scholar 

  • Wein, O.; Sobolík, V. 1989: Segmented electrodiffusion probes simultaneous measurement of shear rate and normal flow component. Collect. Czech. Chem. Commun. (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolík, V., Wein, O., Gil, O. et al. Three-segment electrodiffusion probes for measuring velocity fields close to a wall. Experiments in Fluids 9, 43–48 (1990). https://doi.org/10.1007/BF00575334

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00575334

Keywords

Navigation