Skip to main content
Log in

Particle field characterization by digital in-line holography: 3D location and sizing

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Recent developments have shown the potential of digital in-line holography for diagnostics in fluids. This new method provides a low-cost and easy access method for measuring both size and velocity of small particles in a volume. Here it is shown that by applying traditional image processing tools on the particle images digitally reconstructed, statistically reliable results on particles size and location are provided. The method is experimentally illustrated by glass microspheres that are moving in a turbulent flow generated by an annular jet. A comparison with the histogram diameters provided by a common diffraction particle sizer are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

1−O (ξ, η):

Amplitude distribution in the object field

I z (x,y):

Intensity distribution at a distance z

Z e :

Distance from the object to the sensor plane

Z r :

Reconstruction distance

Z s :

Curvature radius of the illuminating wave front

λ:

Wavelength of the laser source

H z (x,y):

Fresnel Kernel

ψ z (x,y):

Reconstruction wavelet function

R (x ,y):

Reconstructed image

PSF(x, y):

Point spread function

δCCD:

Pixel size

d :

Theoretical diameter of the particle image

D :

Diameter of the experimental particle image

F :

Beam obscuration

ɛ :

Tolerance parameter for sampling condition

δz :

Measurement accuracy on axial coordinate

References

  • Belaïd S, Lebrun D, Özkul C (1997) Application of two dimensional wavelet transform to hologram analysis: visualization of glass fibers in a turbulent flame. Opt Eng 36:1947–1951

    Google Scholar 

  • Blaisot JB, Ledoux M (1998) Simultaneous measurement of diameter and position of spherical particles in a spray by an original imaging method. Appl Opt 37(22):5137–5144

    CAS  Google Scholar 

  • Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Özkul C (2000) Application of wavelet transform to hologram analysis: three dimensional location of particles. Opt Lasers Eng 33:409–421

    Article  Google Scholar 

  • Chan WT, Ko WM (1978) Coherent structures in the outer mixing region of annular jets. J Fluid Mech 89:515–533

    Google Scholar 

  • Coetmellec S, Buraga-Lefebvre C, Lebrun D, Özkul C (2001) Application of in-line digital holography to multiple plane velocimetry. Meas Sci Technol 12:1392–1397

    Article  CAS  Google Scholar 

  • Fournier C, Ducottet C, Fournel T(2004) Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image. Meas Sci Technol 15:686–693

    Article  CAS  Google Scholar 

  • Goodman JW (1966) Introduction to Fourier optics, 2nd edn. McGraw-Hill, Tokyo

    Google Scholar 

  • Lebrun D, Touil CE, Özkul C (1996) Methods for the deconvolution of defocused-images pairs recorded separately on two CCD cameras: application to particle sizing. Appl Opt 35(32):6375–6381

    Google Scholar 

  • Lebrun D, Belaïd S, Özkul C (1999) Hologram reconstruction by use of optical wavelet transform. Appl Opt 38:3730–3734

    Google Scholar 

  • Lebrun D, Benkouider AM, Coëtmellec S, Malek M (2003) Particle field digital holography reconstruction in arbitrary tilted planes. Opt Exp 11:224–229 Available from<http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-224>

    Google Scholar 

  • Malek M, Coëtmellec S, Allano D, Lebrun D (2003) Formulation of in-line holography process by a linear shift invariant system: application of the measurement of fiber diameter. Opt Commun 223:263–271

    Article  CAS  Google Scholar 

  • Malek M, Allano D, Coëtmellec S, Özkul C, Lebrun D (2004a) Digital in-line holography for three-dimensional-two components particle tracking velocimetry. Meas Sci Tech 15:699–705

    Article  CAS  Google Scholar 

  • Malek M, Allano D, Coetmellec S, Lebrun D (2004b) Digital in-line holography: influence of the shadow density on particle field extraction. Opt Express 12(10):2270–2279

    Article  Google Scholar 

  • Meng H, Anderson WL, Hussain F, Liu DD (1993) Intrinsic speckle noise in in-line particle holography. J Opt Soc Am A 10(9):2046–2058

    CAS  Google Scholar 

  • Milgram JH, Li W (2002) Computational reconstruction of images from holograms. Appl Opt 41:853–864

    PubMed  Google Scholar 

  • Nishihara K, Hatano S, Nagayama K (1997) New method of obtaining particle diameter by the fast Fourier transform pattern of the in-line hologram. Opt Eng 36(9):2429–2439

    Google Scholar 

  • Owen RB, Zozulya AA (2000) In-line digital holographic sensor for monitoring and characterizing marine particulates. Opt Eng 39:2187–2197

    Article  Google Scholar 

  • Ozkul C (1981) Traitement Optique des figures de diffraction de Fraunhofer pour une analyse avec une ligne de microphotodiodes. Optica Acta 28(11):1543–1549

    Google Scholar 

  • Pan G, Meng H (2001) Digital in-line holographic PIV for 3D particulate flow diagnostics. In: Proceedings of the fourth international symposium on particle image velocimetry, Göttingen, Germany, 17–19 September, 2001

  • Patte-Rouland B, Lalizel G, Moreau J, Rouland E (2001) Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition. Meas Sci Technol 12:1404–1412

    Article  CAS  Google Scholar 

  • Royer H (1974) An application of high-speed microholography: the metrology of fogs. Nouv Rev Opt 5(2):87–93

    Article  Google Scholar 

  • Sheng J, Malkiel E, Katz J (2003) Single beam two views holographic particle image velocimetry. Appl Opt 42:235–249

    PubMed  Google Scholar 

  • Slimani F, Grehan G, Gouesbet G, Allano D (1984) Near-field Lorenz-Mie theory and its application to microholography. Appl Opt 23(22):4140–4148

    Google Scholar 

  • Sun H, Dong H, Player MA, Watson J, Paterson DM Perkins R (2002) In line digital video holography for the study of erosion processes in sediments. Meas Sci Technol 13:L7–L12

    Article  CAS  Google Scholar 

  • Thompson BJ (1989) Holographic methods for particle size and velocity measurements recent advances. In: Proceedings of holographic optics. II. Principles and applications, vol 1136, Paris, France, pp 308–325

  • Tyler GA, Thompson BJ (1976) Fraunhofer holography applied to particle size analysis. A reassessment. Optica Acta 23(9):685–700

    Google Scholar 

  • Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ (2001) Digital in-line holography for biological applications. PNAS 98:11301–11305

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ (2002) Digital in-line holography of microspheres. Appl Opt 41:5367–5375

    CAS  PubMed  Google Scholar 

  • Xu W, Jericho MH, Kreuzer HJ, Meinertzhagen IA (2003) Tracking particles in four dimensions with in-line holographic microscopy. Opt Lett 28:164–166

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lebrun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, S.L., Allano, D., Patte-Rouland, B. et al. Particle field characterization by digital in-line holography: 3D location and sizing. Exp Fluids 39, 1–9 (2005). https://doi.org/10.1007/s00348-005-0937-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-0937-0

Keywords

Navigation