Skip to main content
Log in

Reconstructing three-dimensional wake topology based on planar PIV measurements and pattern recognition analysis

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The present study presents a new technique for reconstructing the salient aspects of three-dimensional wake topology based on time-resolved, planar, two-component particle image velocimetry data collected in multiple orthogonal planes. The technique produces conditionally averaged flow field reconstructions based on a pattern recognition analysis of velocity fields. It is validated on the wake of a low-aspect ratio dual step cylinder geometry, consisting of a large diameter cylinder (D) with small aspect ratio (L/D) attached to the mid-span of a small diameter cylinder (d). For a dual step cylinders with D/d = 2, and L/D = 1, numerical and experimental data are considered for ReD = 150 (laminar wake) and for ReD = 2100 (turbulent wake). The results show that the proposed technique successfully reconstructs the dominant periodic wake vortex interactions and can be extended to a wide range of turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements. In: Particle image velocimetry. Springer, Berlin, pp 127–154

  • Elsinga GE, Poelma C, Schroder A, Geisler R, Scarano F, Westerweel J (2012) Tracking of vortices in a turbulent boundary layer. J Fluid Mech 697:273–295

    Article  MATH  Google Scholar 

  • Ferre JA, Giralt F (1989) Pattern-recognition analysis of the velocity field in plane turbulent wakes. J Fluid Mech 198:27–64

    Article  MathSciNet  MATH  Google Scholar 

  • Ghaemi S, Scarano F (2013) Turbulent structure of high amplitude pressure peaks within the turbulent boundary layer. J Fluid Mech 735:381–426

    Article  MATH  Google Scholar 

  • Hangan H, Kopp GA, Vernet A, Martinuzzi R (2001) A wavelet pattern recognition technique for identifying flow structures in cylinder generated wakes. J Wind Eng Ind Aerodyn 89(11):1001–1015

    Article  Google Scholar 

  • Kopp GA, Ferre JA, Giralt F (1997) The use of pattern recognition and proper orthogonal decomposition in identifying the structure of fully-developed free turbulence. J Fluids Eng 119(2):289–296

    Article  Google Scholar 

  • Kourentis L, Konstantinidis E (2012) Uncovering large-scale coherent structures in natural and forced turbulent wakes by combining PIV, POD, and FTLE. Exp Fluids 52(3):749–763

    Article  Google Scholar 

  • Lewis C, Gharib M (1991) An exploration of the wake three dimensionalities caused by a local discontinuity in cylinder diameter. Phys Fluids A(4):104–117

    Google Scholar 

  • Ma X, Karamanos G-S, Karniadakis GE (2000) Dynamics and low-dimensionality of a turbulent near wake. J Fluid Mech 410:29–65

    Article  MathSciNet  MATH  Google Scholar 

  • McClure J, Morton C, Yarusevych S (2015) Flow development and structural loading on dual step cylinders in the laminar shedding regime. Phys Fluids 27(6):063602

    Article  Google Scholar 

  • Morton C, Yarusevych S (2014a) On vortex shedding from low aspect ratio dual step cylinders. J Fluids Struct 44:251–269

    Article  Google Scholar 

  • Morton C, Yarusevych S (2014b) Analyzing three-dimensional wake vortex dynamics using time-resolved planar PIV. In: 17th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 07–10 July

  • Morton C, Yarusevych S (2015) Three dimensional flow and surface visualization with hydrogen bubble technique. J Vis 18(1):47–58

  • Morton C, Yarusevych S, Scarano F (2016) A tomographic piv investigation of flow development over dual step cylinders. Phys Fluids 28:025104

  • Rivero A, Ferre JA, Giralt F (2001) Organized motions in a jet in crossflow. J Fluid Mech 444:117–149

    Article  MATH  Google Scholar 

  • Robinson O, Rockwell D (1993) Construction of three-dimensional images of flow structure via particle tracking techniques. Exp Fluids 14(4):257–270

    Article  Google Scholar 

  • Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Eng Ind Aerodyn 49(1):79–100

    Article  Google Scholar 

  • Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060

    Google Scholar 

  • Scarano F, Benocci C, Riethmuller ML (1999) Pattern recognition analysis of the turbulent flow past a backward facing step. Phys Fluids (1994-present) 11(12):3808–3818

    Article  MATH  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part i: coherent structures. Q Appl Math 45(3):561–571

    MathSciNet  MATH  Google Scholar 

  • Soria J, Atkinson C (2008) Towards 3C-3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV (Tomo-HPIV). Meas Sci Technol 19(7):074002

    Article  Google Scholar 

  • Stansby PK (1974) The effects of end plates on the base pressure coefficient of a circular cylinder. Aeronaut J 78:36

    Google Scholar 

  • Tavoularis S (2005) Measurement in fluid mechanics. Cambridge University Press, Cambridge

  • Tombazis N, Bearman PW (1997) A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. J Fluid Mech 330:85–112

    Article  Google Scholar 

  • Van Oudheusden BW, Scarano F, Van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39(1):86–98

    Article  Google Scholar 

  • Vernet A, Kopp GA, Ferré JA, Giralt F (1999) Three-dimensional structure and momentum transfer in a turbulent cylinder wake. J Fluid Mech 394:303–337

    Article  MATH  Google Scholar 

  • von Timme A (1957) Ueber die geschwindigkeitsverteilung in wirbeln. Ingenieur-Archiv 25(3):205–225

    Article  MATH  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100

    Article  Google Scholar 

  • Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26:074002

    Article  Google Scholar 

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 28(1):477–539

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Morton.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morton, C., Yarusevych, S. Reconstructing three-dimensional wake topology based on planar PIV measurements and pattern recognition analysis. Exp Fluids 57, 156 (2016). https://doi.org/10.1007/s00348-016-2240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2240-7

Keywords

Navigation