Skip to main content
Log in

Orbiting trajectories and the adiabatic approximation to the capture cross section

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

For the potentialV(R)=CR −4(1+ε(cos2ϑ−1/2)) and a planar geometry we compute classical trajectories, which are a good approximation to those trapped orbits which separate collisions with “capture” from those without. Two possible types of such trajectories (rotating or librating in the rotating reference frame) and the transition between both types are discussed. From the limiting impact parameters accurate capture cross sections may be calculated. They can be compared with the popular approximation known as ADO — (average dipole orientation) — theory, but an analysis of the latter shows that it is theoretically not justified. Instead, the adiabatic approximation for planar collisions is developed with and without angular momentum conservation. It fits numerical calculations very well as long as the transition from rotation to libration lies inside the centrifugal wall, i.e. the separating orbit is a rotation. In the opposite case only qualitative agreement is obtained. Finally, a simple approximation to get 3D capture cross sections from planar calculations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langevin, P.: Ann. Chim. Phys.5, 245 (1905)

    Google Scholar 

  2. Gioumousis, G., Stevenson, D.P.: J. Chem. Phys.29, 294 (1958)

    Google Scholar 

  3. Henchman, M.J.: In: Ion-molecule reactions. Franklin, J.L. (ed.), Vol. 1. London: Butterworths 1972

    Google Scholar 

  4. Su, T., Bowers, M.T.: In: Gas phase ion chemistry. Bowers, M.T. (ed.), Vol. 1. New York: Academic Press 1979

    Google Scholar 

  5. Pechukas, P., Pollak, E.: J. Chem. Phys.67, 5976 (1977)

    Google Scholar 

  6. Pollak, E., Pechukas, P.: J. Chem. Phys.69, 1218 (1978)

    Google Scholar 

  7. Pollak, E., Child, M., Pechukas, P.: J. Chem. Phys.72, 1669 (1980)

    Google Scholar 

  8. Pechukas, P.: J. Chem. Phys.73, 993 (1980)

    Google Scholar 

  9. Pollak, E.: Chem. Phys. Lett.91, 27 (1982)

    Google Scholar 

  10. Dugan, J.V., Magee, J.L.: J. Chem. Phys.47, 3103 (1967)

    Google Scholar 

  11. Dugan, J.V.: Chem. Phys. Lett.8, 198 (1970)

    Google Scholar 

  12. Dugan, J.V., Palmer, R.W.: Chem. Phys. Lett.13, 144 (1971)

    Google Scholar 

  13. Dugan, J.V., Canright, R.B.: J. Chem. Phys.56, 3623 (1971)

    Google Scholar 

  14. Dugan, J.V.: Chem. Phys. Lett.21, 476 (1973)

    Google Scholar 

  15. Chesnavich, W.J., Su, T., Bowers, M.T.: J. Chem. Phys.72, 2641 (1980)

    Google Scholar 

  16. Su, T., Chesnavich, W.J.: J. Chem. Phys.76, 5183 (1982)

    Google Scholar 

  17. Su, T.: J. Chem. Phys.82, 2164 (1985)

    Google Scholar 

  18. Hsieh, E.T., Castleman, A.W., Upschulte, B.L.: Announced in Ref. 18

    Google Scholar 

  19. Rynefors, K., Marković, N.: Chem. Phys.92, 327 (1985)

    Google Scholar 

  20. Moran, T.F., Hamill, W.H.: J. Chem. Phys.39, 1413 (1963)

    Google Scholar 

  21. Hsieh, E.T., Castleman, A.W.: Int. J. Mass Spectrosc. Ion Phys.40, 295 (1981)

    Google Scholar 

  22. Su, T., Bowers, M.T.: J. Chem. Phys.58, 3027 (1973)

    Google Scholar 

  23. Su, T., Bowers, M.T.: Int. J. Mass Spectrosc. Ion Phys.25, 1 (1975)

    Google Scholar 

  24. Bass, L., Su, T., Bowers, M.T.: Int. J. Mass Spectrosc. Ion Phys.28, 389 (1978)

    Google Scholar 

  25. Bates, D.: Chem. Phys. Lett.82, 396 (1981)

    Google Scholar 

  26. Bates, D.: Proc. R. Soc. London Ser. A384, 289 (1982)

    Google Scholar 

  27. Bates, D.: Chem. Phys. Lett.97, 19 (1983)

    Google Scholar 

  28. Takayanagi, K.: J. Phys. Soc. Jpn.45, 976 (1978)

    Google Scholar 

  29. Sakimoto, K.: J. Phys. Soc. Jpn.48, 1683 (1980)

    Google Scholar 

  30. Sakimoto, K., Takayanagi, K.: J. Phys. Soc. Jpn.48, 2076 (1980)

    Google Scholar 

  31. Gerlich, D., Nowotny, U., Schlier, Ch., Teloy, E.: Chem. Phys.47, 245 (1980)

    Google Scholar 

  32. Pollak, E.: Chem. Phys.61, 305 (1981)

    Google Scholar 

  33. Goldstein, H.: Classical mechanics. Reading: Addison Wesley 1980, 11–7

    Google Scholar 

  34. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. NBS Applied Mathematical Series 55. Washington D.C. 1964

  35. Jahnke-Emde: Tables of higher functions. Emde, F. (ed.). Leipzig: Teubner (1948)

    Google Scholar 

  36. Pauling, L.: Phys. Rev.27, 568 (1926)

    Google Scholar 

  37. Mensing, L., Pauli, W.: Phys. Z.27, 509 (1928)

    Google Scholar 

  38. Manneback, C.: Phys. Z.27, 563 (1926)

    Google Scholar 

  39. Clary, D.C.: Mol. Phys.53, 3 (1984);54, 605 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, K., Schlier, C. Orbiting trajectories and the adiabatic approximation to the capture cross section. Z Phys D - Atoms, Molecules and Clusters 1, 391–401 (1986). https://doi.org/10.1007/BF01431182

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01431182

PACS

Navigation