Skip to main content
Log in

Current-induced coupling between conductance channels in membranes

Multi-Channel Interaction and Mean Field Condition

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The driven system of conducting channels in a nerve membrane is investigated. A current flow generates a coupling between the channels: the current through a channel is influenced by the presence of other conducting channels via the deformation of the equipotential surfaces within the media adjacent to the membrane. We derive an integral equation for the membrane voltageV(s) (s in the membrane plane) and solve it for different membrane conductance distributionsγ(s) including models for stochastic distributions of conducting channels.V(s) is a nonlinear functional ofγ(s). The system of coupled channels is compared with an Ising model. The system exhibits a multi-channel interaction which can be characterized by two different rangesd int andD 1. For a mean channel distanced 0d int interaction effects are negligible, and ford 0D 1 all channel-voltages are equal and thus represent a “mean-field” for the channels. Increasing conductivity of the medium decreasesd int and increasesD 1. With experimental data on sodium channels in nerve membranes we find:d intd 0, i.e. a 50% decrease of the channel-voltages by the interaction, andD 1≈103⋯104 d 0, which indicates mean-field behaviour of the channels. In a subsequent paper we shall treat the statistics of channels which open and close stochastically under the influence of the local membrane voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cole, K.S.: Membranes, Ions and Impulses. Berkeley-Los Angeles-London: University of California Press 1968

    Google Scholar 

  2. Scott, A.C.: Rev. Mod. Phys.47, 487 (1975)

    Google Scholar 

  3. Ehrenstein, G.: Physics Today29, No. 10, 33 (1976)

    Google Scholar 

  4. Ulbricht, W.: Biophys. Struct. Mechanism1, 1 (1974) and Ann. Rev. Biophys. Bioeng.6, 7 (1977)

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: J. Physiol. (Lond.)116, 449, 473 and 497 (1952); ibid.117, 500 (1952)

    Google Scholar 

  6. Changeux, J.P., Thiéry, N., Tung, I., Kittel, C.: Proc. Nat. Acad. Sci. (U.S.A.)57, 335 (1967)

    Google Scholar 

  7. Adam, G.: Z. Naturforsch.236, 181 (1968)

    Google Scholar 

  8. Blumenthal, R., Changeux, J.P., Lefever, R.: J. Membr. Biol.2, 351 (1970)

    Google Scholar 

  9. Hamel, B.B., Zimmerman, I.: Biophys. J.10, 1029 (1970)

    Google Scholar 

  10. Bass, L., Moore, W.J.: J. Membr. Biol.12, 361 (1973)

    Google Scholar 

  11. Starzak, M.E.: J. Theor. Biol.39, 487 (1973)

    Google Scholar 

  12. Bretag, A.H., Davis, B.R., Kerr, D.I.B.: J. Membr. Biol.16, 363 (1974)

    Google Scholar 

  13. Aizawa, Y., Kobatake, Y.: Progr. Theor. Phys.52, 1094 (1974); J. Stat. Phys.15, 129 (1976)

    Google Scholar 

  14. Gotoh, H.: J. Theor. Biol.53, 309 (1975)

    Google Scholar 

  15. Gosh, P.K., Sengupta, D.: J. Theor. Biol.73, 609 (1978)

    Google Scholar 

  16. Binstock, L., Adelman Jr., W.J., Senft, J.P., Lecar, H.: J. Membr. Biol.21, 25 (1975)

    Google Scholar 

  17. Keynes, R.D., Rojas, E.: J. Physiol. (Lond.)255, 157 (1976)

    Google Scholar 

  18. Takashima, S., Yantorno, R., Novack, R.: Biochim. Biophys. Acta469, 74 (1977)

    Google Scholar 

  19. von der Heydt, I., von der Heydt, N., Obermair, G.: Lecture notes in Physics84, 343, Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  20. Jackson, J.D.: Classical Electrodynamics. New York-London-Sydney: Wiley 1965

    Google Scholar 

  21. Durand, E.: Electrostatique, Vol. III+I. Paris: Masson et Cie. 1966

    Google Scholar 

  22. Abramowitz, M., Stegun, I.A. (ed.): Handbook of Mathematical Functions, New York: Dover Publications 1965

    Google Scholar 

  23. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 4th ed. New York-San Francisco-London: Academic Press 1965

    Google Scholar 

  24. Läuger, P.: Biochim. Biophys. Acta455, 493 (1976)

    Google Scholar 

  25. Ewald, P.P.: Ann. Physik 464, 253 (1921)

    Google Scholar 

  26. Tosi, M.P.: Solid State Physics16, 1 (1964)

    Google Scholar 

  27. Fisher, M.E.: J. Phys. Soc. Japán (Suppl.)26, 87 (1969)

    Google Scholar 

  28. Becker, F., Hahn, H.: Phys. Lett. A42, 9 (1972)

    Google Scholar 

  29. Decker, I., Hahn, H.: Physica83A, 143 (1976); ibid.89A, 37 (1977)

    Google Scholar 

  30. Kittel, C.: Introduction to Solid State Physics, 5th ed., New York-London-Sydney-Toronto: Wiley 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von der Heydt, N., von der Heydt, I. Current-induced coupling between conductance channels in membranes. Z Physik B 37, 249–264 (1980). https://doi.org/10.1007/BF01323039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01323039

Keywords

Navigation