Skip to main content
Log in

End magnets with rare earth permanent magnet material for a compact race-track microtron

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The design and tuning of end magnets of a compact 12MeV race-track microtron (RTM) which is under construction at the Technical University of Catalonia are described. These magnets are systems composed of four dipoles with a Rare-Earth Permanent Magnet (REPM) material used as a source of the magnetic field. The magnetic field level is adjusted by means of tuning plungers in the steel poles. We discuss the end magnets design and results of simulations of the field distributions and describe the REPM blocks magnetization and magnetic field measurements applied in this work. Also, the techniques used for the field distribution tuning procedure are explained in detail. Finally, we discuss results of simulations of particle trajectories in the measured magnetic field of the assembled and tuned end magnets and show that they can provide a passage of the synchronous particle through all orbits of the RTM and therefore the correct operation of the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Veksler, Dokl. Akad. Nauk 43, 346 (1944) (in Russian)

    Google Scholar 

  2. V.I. Veksler, J. Phys. 9, 153 (1945)

    Google Scholar 

  3. S.P. Kapitza, V.N. Melekhin, The Microtron (Harwood Academic Publ., London, 1978)

  4. R.E. Rand, Recirculating Electron Accelerators (Harwood Academic Publishers, New York, 1984)

  5. S. Humphries, Jr., Principles of Charged Particle Acceleration (John Wiley and Sons, 1999)

  6. L.L. Gunderson, C.G. Willet, L.B. Harrison, F.A. Calvo, Intraoperative Irradiation: Techniques and Results, 2nd edition (Humana Press, 1999)

  7. L. Picardi, Proceedings of the EPAC-2000 Conference, Vienna, 2000 (Vienna, 2000) pp. 2545

  8. C. Ronsivalle et al., Nucl. Instrum. Methods A 562, 1042 (2006)

    Article  ADS  Google Scholar 

  9. M.L. Meurk et al., Front. Radiat. Ther. Oncol. 31, 65 (1997)

    Article  Google Scholar 

  10. S. Ogorodnikov, V. Petrunin, Phys. Rev. ST Accel. Beams 5, 104701 (2002)

    Article  ADS  Google Scholar 

  11. B.S. Ishkhanov et al., Bull. Russ. Acad. Sci. Phys. 72, 859 (2008)

    Article  Google Scholar 

  12. A.N. Ermakov et al., Bull. Russ. Acad. Sci. Phys. 76, 1198 (2012)

    Article  Google Scholar 

  13. B.S. Ishkhanov, Proceedings of RuPAC 2004, Dubna, 2004 (Dubna, 2004) pp. 474

  14. Yu.A. Kubyshin, A.P. Poseryaev, V.I. Shvedunov, Proceedings of the EPAC 2006, Edinburgh, 2006 (2008)

  15. Yu. Kubyshin, Proceedings of the EPAC 2008 Conference, Genoa, 2008 (Genoa, 2008) pp. 778

  16. M. Ferrer Ballester, Proceedings of the EPAC 2008 Conference, Genoa, 2008 (Genoa, 2008) pp. 2380

  17. Yu.A. Kubyshin, Proceedings of the PAC 2009 Conference, Vancouver, 2009 (Vancouver, 2009) pp. 2775

  18. Yu. Kubyshin, Proceedings of the PAC 2011 Conference, New York, 2011 (New York, 2011) pp. 2029

  19. Yu.A. Kubyshin, Proceedings of the IPAC 2011 Conference, San Sebastian, 2011 (San Sebastian, 2011) pp. 169

  20. A.V. Aloev et al., Nucl. Instrum. Methods A 624, 39 (2010)

    Article  ADS  Google Scholar 

  21. V.I. Shvedunov et al., Nucl. Instrum. Methods A 531, 346 (2004)

    Article  ADS  Google Scholar 

  22. V.I. Shvedunov et al., Nucl. Instrum. Methods A 550, 39 (2005)

    Article  ADS  Google Scholar 

  23. A.B. Temnykh, Nucl. Instrum. Methods A 587, 13 (2008)

    Article  ADS  Google Scholar 

  24. J. Chavanne, G. Le Bec, Proceedings of the IPAC 2014 Conference, Dresden, 2014 (Dresden, 2014) p. 968

  25. H. Babić, M. Sedlaček, Nucl. Instrum. Methods 56, 170 (1967)

    Article  ADS  Google Scholar 

  26. R. Alvinsson, M. Eriksson, Royal Institute of Technology, Stockholm, Report TRITA-EPP-76-07 (1976)

  27. P. Lidbjork, J. Astrom, Proceedings of the PAC1993 Conference, Washington, 1993 (Washington, 1993) pp. 2068

  28. M.A. Green et al., IEEE Trans. Nucl. Sci. 28, 2074 (1981)

    Article  ADS  Google Scholar 

  29. W.P. Trower et al., Nucl. Instrum. Methods B 99, 736 (1995)

    Article  ADS  Google Scholar 

  30. A.I. Karev, Proceedings of the RuPAC 2008 Conference (Zvenigorod, 2008) pp. 124

  31. G.A. Novikov et al., Nucl. Instrum. Methods B 139, 527 (1998)

    Article  ADS  Google Scholar 

  32. M.T. Menzel, H.K. Stokes, Los Alamos National Laboratory, LA-UR-87-115 (1987)

  33. V.G. Gevorkyan, VINITI 183-B8, 1989

  34. ANSYS, Inc., www.ansys.com/Products/Simulation+Technologu/Electromagnets

  35. J.P. Rigla, PhD Thesis, Universitat Politecnica de Catalunya, Barcelona (2013)

  36. H. Herminghaus, Proceedings of the EPAC 1988 Conference, Rome, 1988 (Rome, 1988) pp. 1151

  37. G.A. Novikov et al., Nucl. Instrum. Methods A 524, 60 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Kubyshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, I.Y., Pakhomov, N.I., Shvedunov, V.I. et al. End magnets with rare earth permanent magnet material for a compact race-track microtron. Eur. Phys. J. Plus 129, 271 (2014). https://doi.org/10.1140/epjp/i2014-14271-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14271-3

Keywords

Navigation