Skip to main content
Log in

Simulation study of positron production by picosecond laser-driven electrons

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Positron production by picosecond laser-driven electrons has been studied via simulations. The laser parameters were chosen according to a typical 100 J/1 ps laser system, such as the XingGuang III laser. A near-critical density plasma was used to accelerate electrons. Then the positrons were generated by these electrons interacting with a high-Z converter. Particle-in-cell simulations of laser-plasma interaction indicate that the picosecond laser-accelerated electrons have a temperature up to 12 MeV with a beam charge of 800 nC (>5 MeV). The positron generation was simulated by a Monte Carlo toolkit. The simulation results show that with an optimal converter thickness the generated positron beam has a yield of 5 × 1010 that is over one order of magnitude higher than that from direct laser-solid interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wu, K. Dong, Y. Yan, B. Zhu, T. Zhang, J. Chen, M. Yu, F. Tan, S. Wang, D. Han, F. Lu, Y. Gu, High Energy Density Phys. 23, 115 (2017)

    Article  ADS  Google Scholar 

  2. W. Song, R.-H. Hu, Y.-R. Shou, Z. Gong, J.-Q. Yu, C. Lin, W.-J. Ma, Y.-Y. Zhao, H.-Y. Lu, X.-Q. Yan, Chin. Phys. Lett. 34, 085201 (2017)

    Article  ADS  Google Scholar 

  3. T. Xu, B. Shen, J. Xu, S. Li, Y. Yu, J. Li, X. Lu, C. Wang, X. Wang, X. Liang, Y. Leng, R. Li, Z. Xu, Phys. Plasmas 23, 033109 (2016)

    Article  ADS  Google Scholar 

  4. G.J. Williams, D. Barnak, G. Fiksel, A. Hazi, S. Kerr, C. Krauland, A. Link, M.J.-E. Manuel, S.R. Nagel, J. Park, J. Peebles, B.B. Pollock, F.N. Beg, R. Betti, H. Chen, Phys. Plasmas 23, 123109 (2016)

    Article  ADS  Google Scholar 

  5. E. Liang, T. Clarke, A. Henderson, W. Fu, W. Lo, D. Taylor, P. Chaguine, S. Zhou, Y. Hua, X. Cen, X. Wang, J. Kao, H. Hasson, G. Dyer, K. Serratto, N. Riley, M. Donovan, T. Ditmire, Sci. Rep. 5, 13968 (2015)

    Article  ADS  Google Scholar 

  6. H. Chen, F. Fiuza, A. Link, A. Hazi, M. Hill, D. Hoarty, S. James, S. Kerr, D.D. Meyerhofer, J. Myatt, J. Park, Y. Sentoku, G.J. Williams, Phys. Rev. Lett. 114, 215001 (2015)

    Article  ADS  Google Scholar 

  7. G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira, M. Zepf, Nat. Commun. 6, 4741 (2015)

    Article  Google Scholar 

  8. C.P. Ridgers, J.G. Kirk, R. Duclous, T.G. Blackburn, C.S. Brady, K. Bennett, T.D. Arber, A.R. Bell, J. Comput. Phys. 260, 273 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Y.J. Gu, O. Klimo, S. Weber, G. Korn, New J. Phys. 18, 113023 (2016)

    Article  ADS  Google Scholar 

  10. H. Chen, J.C. Sheppard, D.D. Meyerhofer, A. Hazi, A. Link, S. Anderson, H.A. Baldis, R. Fedosejev, J. Gronberg, N. Izumi, S. Kerr, E. Marley, J. Park, R. Tommasini, S. Wilks, G.J. Williams, Phys. Plasmas 20, 013111 (2013)

    Article  ADS  Google Scholar 

  11. D.B. Cassidy, S.H.M. Deng, H.K.M. Tanaka, A.P. Mills Jr, Appl. Phys. Lett. 88, 194105 (2006)

    Article  ADS  Google Scholar 

  12. E. Liang, High Energy Density Phys. 9, 425 (2013)

    Article  ADS  Google Scholar 

  13. Y. Yan, B. Zhang, Y. Wu, K. Dong, Z. Yao, Y. Gu, Phys. Plasmas 20, 103114 (2013)

    Article  ADS  Google Scholar 

  14. C. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, Appl. Phys. Lett. 77, 2662 (2000)

    Article  ADS  Google Scholar 

  15. W. Sarri, A.Di Schumaker, M. Piazza, B. Vargas, M.E. Dromey, V. Dieckmann, A. Chvykov, V. Maksimchuk, Z.H. Yanovsky, B.X. He, J.A. Hou, A.G.R. Nees, C.H. Thomas, M. Keit, K.Krushelnick Zepf, plus 1pt minus 1ptG, Phys. Rev. Lett. 110, 255002 (2013)

    Article  ADS  Google Scholar 

  16. H. Chen, S.C. Wilks, D.D. Meyerhofer, J. Bonlie, C.D. Chen, S.N. Chen, C. Courtois, L. Elberson, G. Gregori, W. Kruer, O. Landoas, J. Mithen, J. Myatt, C.D. Murphy, P. Nilson, D. Price, M. Schneider, R. Shepherd, C. Stoeckl, M. Tabak, R. Tommasini, P. Beiersdorfer, Phys. Rev. Lett. 105, 015003 (2010)

    Article  ADS  Google Scholar 

  17. H. Chen, A. Link, Y. Sentoku, P. Audebert, F. Fiuza, A. Hazi, R.F. Heeter, M. Hill, L. Hobbs, A.J. Kemp, G.E. Kemp, S. Kerr, D.D. Meyerhofer, J. Myatt, S.R. Nagel, J. Park, R. Tommasini, G.J. Williams, Phys. Plasmas 22, 056705 (2015)

    Article  ADS  Google Scholar 

  18. Z.M. Zhang, X.T. He, Z.M. Sheng, M.Y. Yu, Appl. Phys. Lett. 100, 134103 (2012)

    Article  ADS  Google Scholar 

  19. Z.M. Zhang, B. Zhang, W. Hong, M.Y. Yu, Z.G. Deng, J. Teng, S.K. He, Y.Q. Gu, Plasma Phys. Controlled Fusion 58, 105009 (2016)

    Article  ADS  Google Scholar 

  20. K. Nakashima, H. Takabe, Phys. Plasmas 9, 1505 (2002)

    Article  ADS  Google Scholar 

  21. V.M. Ovchinnikov, D.W. Schumacher, M. McMahon, E.A. Chowdhury, C.D. Chen, A. Morace, R.R. Freeman, Phys. Rev. Lett. 110, 065007 (2013)

    Article  ADS  Google Scholar 

  22. C. Gahn, G.D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, K.J. Witte, Phys. Rev. Lett. 83, 4772 (1999)

    Article  ADS  Google Scholar 

  23. L. Willingale, A.G.R. Thomas, P.M. Nilson, H. Chen, J. Cobble, R.S. Craxton, A. Maksimchuk, P.A. Norreys, T.C. Sangster, R.H.H. Scott, C. Stoeckl, C. Zulick, K. Krushelnick, New J. Phys. 15, 025023 (2013)

    Article  ADS  Google Scholar 

  24. Y.-J. Gu, O. Klimo, S.V. Bulanov, S. Weber, Commun. Phys. 1, 93 (2018)

    Article  Google Scholar 

  25. N. Lemos, J.L. Martins, F.S. Tsung, J.L. Shaw, K.A. Marsh, F. Albert, B.B. Pollock, C. Joshi, Plasma Phys. Controlled Fusion 58, 034018 (2016)

    Article  ADS  Google Scholar 

  26. Y. Yan, Y. Wu, J. Chen, M. Yu, K. Dong, Y. Gu, Plasma Phys. Controlled Fusion 59, 045015 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yuqiu Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wu, Y., Zhang, X. et al. Simulation study of positron production by picosecond laser-driven electrons. Eur. Phys. J. D 73, 193 (2019). https://doi.org/10.1140/epjd/e2019-90394-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90394-7

Keywords

Navigation