Skip to main content
Log in

Non-Maxwellian and magnetic field effects in complex plasma wakes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nambu, S.V. Vladimirov, P.K. Shukla, Phys. Lett. A 203, 40 (1995)

    Article  ADS  Google Scholar 

  2. F. Melandsø, J. Goree, Phys. Rev. E 52, 5312 (1995)

    Article  ADS  Google Scholar 

  3. D. Block, J. Carstensen, P. Ludwig, W. Miloch, F. Greiner, A. Piel, M. Bonitz, A. Melzer, Contrib. Plasma Phys. 52, 804 (2012)

    Article  ADS  Google Scholar 

  4. P. Ludwig, W.J. Miloch, H. Kählert, M. Bonitz, New J. Phys. 14, 053016 (2012)

    Article  ADS  Google Scholar 

  5. J. Carstensen, F. Greiner, A. Piel, Phys. Rev. Lett. 109, 135001 (2012)

    Article  ADS  Google Scholar 

  6. E.J. Thomas, R.L. Merlino, M. Rosenberg, Plasma Phys. Control. Fusion 54, 124034 (2012)

    Article  ADS  Google Scholar 

  7. M. Lampe, T.B. Röcker, G. Joyce, S.K. Zhdanov, A.V. Ivlev, G.E. Morfill, Phys. Plasmas 19, 113703 (2012)

    Article  ADS  Google Scholar 

  8. A. Schella, A. Melzer, P. Ludwig, H. Thomsen, M. Bonitz, in Complex plasmas: scientific challenges and technological opportunities, edited by M. Bonitz, J. Lopez, K. Becker, H. Thomsen (Springer, New York, 2014), pp. 51–71

  9. P. Ludwig, C. Arran, M. Bonitz, in Complex plasmas: scientific challenges and technological opportunities, edited by M. Bonitz, J. Lopez, K. Becker, H. Thomsen (Springer, New York, 2014), pp. 73–99

  10. H. Kählert, J.P. Joost, P. Ludwig, M. Bonitz, Contrib. Plasma Phys. 56, 204 (2016)

    Article  ADS  Google Scholar 

  11. J.P. Joost, P. Ludwig, H. Kählert, C. Arran, M. Bonitz, Plasma Phys. Control. Fusion 57, 025004 (2015)

    Article  ADS  Google Scholar 

  12. H. Kählert, Phys. Plasmas 22, 073703 (2015)

    Article  ADS  Google Scholar 

  13. Z. Moldabekov, P. Ludwig, M. Bonitz, T. Ramazanov, Phys. Rev. E 91, 023102 (2015)

    Article  ADS  Google Scholar 

  14. Z.A. Moldabekov, P. Ludwig, J.P. Joost, M. Bonitz, T.S. Ramazanov, Contrib. Plasma Phys. 55, 186 (2015)

    Article  ADS  Google Scholar 

  15. Z.A. Moldabekov, P. Ludwig, M. Bonitz, T.S. Ramazanov, Contrib. Plasma Phys. 56, 442 (2016)

    Article  ADS  Google Scholar 

  16. H. Jung, F. Greiner, O.H. Asnaz, J. Carstensen, A. Piel, Phys. Plasmas 22, 053702 (2015)

    Article  ADS  Google Scholar 

  17. H. Jung, F. Greiner, O.H. Asnaz, J. Carstensen, A. Piel, J. Plasma Phys. 82, 615820301 (2016)

    Article  Google Scholar 

  18. A. Schella, M. Mulsow, A. Melzer, H. Kählert, D. Block, P. Ludwig, M. Bonitz, New J. Phys. 15, 113021 (2013)

    Article  ADS  Google Scholar 

  19. A. Melzer, A. Schella, M. Mulsow, Phys. Rev. E 89, 013109 (2014)

    Article  ADS  Google Scholar 

  20. A. Melzer, Phys. Rev. E 90, 053103 (2014)

    Article  ADS  Google Scholar 

  21. A. Schella, A. Melzer, C. July, C. Bechinger, Soft Matter 11, 1197 (2015)

    Article  ADS  Google Scholar 

  22. D. Block, W.J. Miloch, Plasma Phys. Control. Fusion 57, 014019 (2015)

    Article  ADS  Google Scholar 

  23. S. Sundar, H. Kählert, J.P. Joost, P. Ludwig, M. Bonitz, arXiv:1702.07152 (2017)

  24. Z.A. Moldabekov, P. Ludwig, J.P. Joost, M. Bonitz, T.S. Ramazanov, arXiv:1709.09531 (2017)

  25. I.H. Hutchinson, Phys. Rev. E 85, 066409 (2012)

    Article  ADS  Google Scholar 

  26. O. Arp, J. Goree, A. Piel, Phys. Rev. E 85, 046409 (2012)

    Article  ADS  Google Scholar 

  27. M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, A. Filinov, Phys. Rev. Lett. 96, 075001 (2006)

    Article  ADS  Google Scholar 

  28. P. Ludwig, S. Kosse, M. Bonitz, Phys. Rev. E 71, 046403 (2005)

    Article  ADS  Google Scholar 

  29. M. Bonitz, C. Henning, D. Block, Rep. Prog. Phys. 73, 066501 (2010)

    Article  ADS  Google Scholar 

  30. I.H. Hutchinson, Phys. Plasmas 18, 032111 (2011)

    Article  ADS  Google Scholar 

  31. J.E. Hammerberg, D.S. Lemons, M.S. Murillo, D. Winske, IEEE Trans. Plasma Sci. 29, 247 (2001)

    Article  ADS  Google Scholar 

  32. G. Joyce, M. Lampe, G. Ganguli, IEEE Trans. Plasma Sci. 29, 238 (2001)

    Article  ADS  Google Scholar 

  33. P. Ludwig, H. Kählert, M. Bonitz, Plasma Phys. Control. Fusion 54, 045011 (2012)

    Article  ADS  Google Scholar 

  34. A.A. Rukhadze, A.F. Alexandrov, L.S. Bogdankevich, Principles of plasma electrodynamics (URSS, Moscow, 2013)

  35. A.V. Ivlev, S.K. Zhdanov, S.A. Khrapak, G.E. Morfill, Phys. Rev. E 71, 016405 (2005)

    Article  ADS  Google Scholar 

  36. V. Schweigert, Plasma Phys. Rep. 27, 997 (2001)

    Article  ADS  Google Scholar 

  37. R. Kompaneets, G.E. Morfill, A.V. Ivlev, Phys. Rev. E 93, 063201 (2016)

    Article  ADS  Google Scholar 

  38. I.H. Hutchinson, C.B. Haakonsen, Phys. Plasmas 20, 083701 (2013)

    Article  ADS  Google Scholar 

  39. R. Kompaneets, A.V. Ivlev, S.V. Vladimirov, G.E. Morfill, Phys. Rev. E 85, 026412 (2012)

    Article  ADS  Google Scholar 

  40. P. Ludwig, M. Bonitz, H. Kählert, J.W. Dufty, J. Phys.: Conf. Ser. 220, 012003 (2010)

    Google Scholar 

  41. A. Piel, Phys. Plasmas 24, 033712 (2017)

    Article  ADS  Google Scholar 

  42. I.H. Hutchinson, Plasma Phys. Control. Fusion 48, 185 (2006)

    Article  ADS  Google Scholar 

  43. J. Carstensen, F. Greiner, D. Block, J. Schablinski, W.J. Miloch, A. Piel, Phys. Plasmas 19, 033702 (2012)

    Article  ADS  Google Scholar 

  44. J. Carstensen, H. Jung, F. Greiner, A. Piel, Phys. Plasmas 18, 033701 (2011)

    Article  ADS  Google Scholar 

  45. P.S. Epstein, Phys. Rev. 23, 710 (1924)

    Article  ADS  Google Scholar 

  46. J. Carstensen, F. Haase, H. Jung, B. Tadsen, S. Groth, F. Greiner, A. Piel, IEEE Trans. Plasma Sci. 41, 764 (2013)

    Article  ADS  Google Scholar 

  47. O.H. Asnaz, H. Jung, F. Greiner, A. Piel, Phys. Plasmas 24, 083701 (2017)

    Article  ADS  Google Scholar 

  48. L.J. Hou, Y.N. Wang, Z.L. Mišković, Phys. Rev. E 68, 016410 (2003)

    Article  ADS  Google Scholar 

  49. R. Kompaneets, A.V. Ivlev, V. Nosenko, G.E. Morfill, Phys. Rev. E 89, 043108 (2014)

    Article  ADS  Google Scholar 

  50. A. Melzer, V.A. Schweigert, A. Piel, Phys. Rev. Lett. 83, 3194 (1999)

    Article  ADS  Google Scholar 

  51. V. Nosenko, A.V. Ivlev, R. Kompaneets, G. Morfill, Phys. Plasmas 21, 113701 (2014)

    Article  ADS  Google Scholar 

  52. M. Salimullah, M. Torney, P.K. Shukla, A.K. Banerjee, Phys. Scr. 67, 534 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ludwig.

Additional information

Contribution to the Topical Issue “Fundamentals of Complex Plasmas”, edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, P., Jung, H., Kählert, H. et al. Non-Maxwellian and magnetic field effects in complex plasma wakes. Eur. Phys. J. D 72, 82 (2018). https://doi.org/10.1140/epjd/e2017-80413-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80413-2

Navigation