Skip to main content
Log in

Spatio-temporal cell dynamics in tumour spheroid irradiation

  • Topical issue on Molecular level assessments of radiation biodamage
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Multicellular tumour spheroids are realistic in vitro systems in radiation research that integrate cell-cell interaction and cell cycle control by factors in the medium. The dynamic reaction inside a tumour spheroid triggered by radiation is not well understood. Of special interest is the amount of cell cycle synchronisation which could be triggered by irradiation, since this would allow follow-up irradiations to exploit the increased sensitivity of certain cell cycle phases. In order to investigate these questions we need to support irradiation experiments with mathematical models. In this article a new model is introduced combining the dynamics of tumour growth and irradiation treatments. The tumour spheroid growth is modelled using an agent-based Delaunay/Voronoi hybrid model in which the cells are represented by weighted dynamic vertices. Cell properties like full cell cycle dynamics are included. In order to be able to distinguish between different cell reactions in response to irradiation quality we introduce a probabilistic model for damage dynamics. The overall cell survival from this model is in agreement with predictions from the linear-quadratic model. Our model can describe the growth of avascular tumour spheroids in agreement to experimental results. Using the probabilistic model for irradiation damage dynamics the classic ‘four Rs’ of radiotherapy can be studied in silico. We found a pronounced reactivation of the tumour spheroid in response to irradiation. A majority of the surviving cells is synchronized in their cell cycle progression after irradiation. The cell synchronisation could be actively triggered and should be exploited in an advanced fractionation scheme. Thus it has been demonstrated that our model could be used to understand the dynamics of tumour growth after irradiation and to propose optimized fractionation schemes in cooperation with experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mueller-Klieser, J. Cancer Res. Clin. Oncol. 113, 101 (1987)

    Article  Google Scholar 

  2. J.P. Freyer, R.M. Sutherland, Can. Res. 46, 3504 (1986)

    Google Scholar 

  3. L.A. Kunz-Schughart, Cell Biol. Int. 23, 157 (1999)

    Article  Google Scholar 

  4. H. Withers, Advances in radiation biology 15, 241 (1975)

    Google Scholar 

  5. H.R. Withers, Cancer 55, 2086 (1985)

    Article  Google Scholar 

  6. A.J.G. Eric, J. Hall, Radiobiology for the Radiologist, 6th edn. (Lippincott Williams & Wilkins, 2005)

  7. J.C. Horiot, P. Bontemps, W. van den Bogaert, R.L. Fur, D. van den Weijngaert, M. Bolla, J. Bernier, A. Lusinchi, M. Stuschke, J. Lopez-Torrecilla et al., Radiother. Oncol. 44, 111 (1997)

    Article  Google Scholar 

  8. M. Saunders, A.M. Rojas, S. Dische, Clin. Oncol. (R. Coll. Radiol.) 20, 127 (2008)

    Google Scholar 

  9. M. Stuschke, H.D. Thames, Int. J. Radiat. Oncol. Biol. Phys. 37, 259 (1997)

    Google Scholar 

  10. M.R. Owen, T. Alarcn, P.K. Maini, H.M. Byrne, J. Math. Biol. 58, 689 (2009)

    Article  MathSciNet  Google Scholar 

  11. B. Ribba, T. Colin, S. Schnell, Theor. Biol. Med. Model. 3, 7 (2006)

    Article  Google Scholar 

  12. T. Roose, S.J. Chapman, P.K. Maini, SIAM Rev. 49, 179 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. D. Drasdo, Polymer and cell dynamics: multiscale modeling and numerical simulations, On selected individual-based approaches to the dynamics in multicellular systems (Birkhäuser, Basel, 2003), pp. 169–204

  14. G. Schaller, M. Meyer-Hermann, Phys. Rev. E 71, 051910 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Galle, G. Aust, G. Schaller, T. Beyer, D. Drasdo, Cytometry Part A 69, 704 (2006)

    Article  Google Scholar 

  16. M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)

    Article  Google Scholar 

  17. M. Kremer, W.K. Weyrather, M. Scholz, Techn. Canc. Res. Treat. 2, 427 (2003)

    Google Scholar 

  18. E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Ion-induced electron production in tissue-like media and dna damage mechanisms (2008)

  19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, 1994)

  20. T. Lecuit, P.F. Lenne, Nat. Rev. Mol. Cell. Biol. 8, 633 (2007), ISSN 1471-0072

    Article  Google Scholar 

  21. T. Beyer, G. Schaller, A. Deutsch, M. Meyer-Hermann, Comput. Phys. Commun. 172, 86 (2005)

    Article  ADS  Google Scholar 

  22. M. Meyer-Hermann, Curr. Top. Dev. Biol. 81, 373 (2008)

    Article  Google Scholar 

  23. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. Roy. Soc. Lond. A 324, 301 (1971)

    Article  ADS  Google Scholar 

  24. Y.S. Chu, S. Dufour, J.P. Thiery, E. Perez, F. Pincet, Phys. Rev. Lett. 94, 028102 (2005)

    Article  ADS  Google Scholar 

  25. P. Canadas, V.M. Laurent, C. Oddou, D. Isabey, S. Wendling, J. Theor. Biol. 218, 155 (2002)

    Article  MathSciNet  Google Scholar 

  26. J.C. Dallon, H.G. Othmer, J. Theor. Biol. 231, 203 (2004)

    Article  MathSciNet  Google Scholar 

  27. G. Schaller, M. Meyer-Hermann, Phil. Trans. R. Soc. A 364, 1443 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Beyer, M. Meyer-Hermann, Phys. Rev. E 76, 021929 (2007)

    Article  ADS  Google Scholar 

  29. G.D. Wilson, Cancer Metastasis Rev. 23, 209 (2004)

    Article  Google Scholar 

  30. J. Denekamp, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49, 357 (1986)

    Article  Google Scholar 

  31. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland, 2002), ISBN 0815332181

  32. R.A. Weinberg, The Biology of Cancer (Garland Science, 2006)

  33. G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Nat. Biotech. 15, 778 (1997)

    Article  Google Scholar 

  34. G. Cheng, J. Tse, R.K. Jain, L.L. Munn, PLoS One 4, e4632 (2009)

  35. D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000)

    Article  Google Scholar 

  36. V.D. Gordon, M.T. Valentine, M.L. Gardel, D. Andor-Ard, S. Dennison, A.A. Bogdanov, D.A. Weitz, T.S. Deisboeck, Exp. Cell Res. 289, 58 (2003)

    Article  Google Scholar 

  37. T. Bauer, N. Motosugi, K. Miura, H. Sabe, T. Hiiragi, Genesis. 46, 152 (2008)

    Article  Google Scholar 

  38. D. Schardt, Nucl. Phys. A 787, 633 (2007)

    Article  ADS  Google Scholar 

  39. N. Saito, C. Bert, N. Chaudhri, A. Gemmel, D. Schardt, M. Durante, E. Rietzel, Phys. Med. Biol. 54, 4849 (2009)

    Article  Google Scholar 

  40. K. Parodi, N. Saito, N. Chaudhri, C. Richter, M. Durante, W. Enghardt, E. Rietzel, C. Bert, Med. Phys. 36, 4230 (2009)

    Article  Google Scholar 

  41. J. Topsch, M. Scholz, W. Mueller-Klieser, Radiat. Res. 167, 645 (2007)

    Article  Google Scholar 

  42. P. Fritz, K.J. Weber, C. Frank, M. Flentje, Radiother. Oncol. 39, 73 (1996)

    Article  Google Scholar 

  43. W.K. Sinclair, Radiat. Res. 33, 620 (1968)

    Article  Google Scholar 

  44. J.P. Freyer, R.M. Sutherland, J. Cell. Physiol. 124, 516 (1985)

    Article  Google Scholar 

  45. S. Rockwell, Radiat. Res. 107, 375 (1986)

    Article  Google Scholar 

  46. H.R. Withers, J.M. Taylor, B. Maciejewski, Acta Oncol. 27, 131 (1988)

    Article  Google Scholar 

  47. E.I. Zacharaki, G.S. Stamatakos, K.S. Nikita, N.K. Uzunoglu, Comput. Methods Programs Biomed. 76, 193 (2004)

    Article  Google Scholar 

  48. J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Käs, Biophys. J. 81, 767 (2001)

    Article  Google Scholar 

  49. A.J. Maniotis, C.S. Chen, D.E. Ingber, Proc. Natl. Acad. Sci. USA 94, 849 (1997)

    Article  ADS  Google Scholar 

  50. Y.S. Chu, W.A. Thomas, O. Eder, F. Pincet, E. Perez, J.P. Thiery, S. Dufour, J. Cell Biol. 167, 1183 (2004)

    Article  Google Scholar 

  51. J. Galle, M. Loeffler, D. Drasdo, Biophys. J. 88, 62 (2005)

    Article  ADS  Google Scholar 

  52. V.I. Baranov, V.M. Belichenko, C.A. Shoshenko, Microvas. Res. 60, 168 (2000)

    Article  Google Scholar 

  53. J. Grote, R. Susskind, P. Vaupel, Pflugers Arch. 372, 37 (1977)

    Article  Google Scholar 

  54. E.K. Rofstad, K. Eide, R. Skøyum, M.E. Hystad, H. Lyng, Int. J. Radiat. Biol. 70, 241 (1996)

    Article  Google Scholar 

  55. J.J. Casciari, S.V. Sotirchos, R.M. Sutherland, Can. Res. 48, 3905 (1988)

    Google Scholar 

  56. J. Landry, J.P. Freyer, R.M. Sutherland, J. Cell. Physiol. 106, 23 (1981)

    Article  Google Scholar 

  57. J.J. Casciari, S.V. Sotirchos, R.M. Sutherland, J. Cell. Physiol. 151, 386 (1992)

    Article  Google Scholar 

  58. J.P. Wehrle, C.E. Ng, K.A. McGovern, N.R. Aiken, D.C. Shungu, E.M. Chance, J.D. Glickson, NMR Biomed. 13, 349 (2000)

    Article  Google Scholar 

  59. L.A. Kunz-Schughart, J. Doetsch, W. Mueller-Klieser, K. Groebe, Am. J. Physiol. Cell Physiol. 278, 765 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kempf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempf, H., Bleicher, M. & Meyer-Hermann, M. Spatio-temporal cell dynamics in tumour spheroid irradiation. Eur. Phys. J. D 60, 177–193 (2010). https://doi.org/10.1140/epjd/e2010-00178-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00178-4

Keywords

Navigation