Skip to main content
Log in

Geometric discord characterize localization transition in the one-dimensional systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the localization transition in three typical one-dimensional systems by means of geometric discord. For the slowly varying potential model, the geometric discord exhibits a sharp transition between the extended states and the localized ones and it is independent on the system size L in the extended states. In the Aubry-André model, the geometric discord drop fast and show an inflexion around the boundary between the extended states and the localized ones. For the exponential hopping model, although there is an energy dependent mobility edges, the geometric discord characterize the boundary between the localized states and the extended ones exactly, which is similar with the traditional method. All these features show that the geometric discord can be good quantity to detect localization transition in these one-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. J. Biddle, S. Das Sarma, Phys. Rev. Lett. 104, 070601 (2010)

    Article  ADS  Google Scholar 

  3. J. Biddle, D.J. Priour Jr., B. Wang, S. Das Sarma, Phys. Rev. B 83, 075105 (2011)

    Article  ADS  Google Scholar 

  4. J. Billy, V. Josse, Z.C. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  5. Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, Y. Silberberg, Phys. Rev. Lett. 103, 013901 (2009)

    Article  ADS  Google Scholar 

  6. S. Faez, A. Strybulevych, J.H. Page, A. Lagendijk, B.A. van Tiggelen, Phys. Rev. Lett. 103, 155703 (2009)

    Article  ADS  Google Scholar 

  7. C. Aulbach, A. Wobst, G. Ingold, P. Hänggi, I. Varga, New J. Phys. 6, 70 (2004)

    Article  ADS  Google Scholar 

  8. S. Das Sarma, S. He, X.C. Xie, Phys. Rev. B 41, 5544 (1990)

    Article  ADS  Google Scholar 

  9. S. Das Sarma, Song He, X.C. Xie, Phys. Rev. Lett. 61, 2144 (1988)

    Article  ADS  Google Scholar 

  10. W. Zhang, R. Yang, Y. Zhao, S.Q. Duan, P. Zhang, Sergio E. Ulloa, Phys. Rev. B 81, 214202 (2010)

    Article  ADS  Google Scholar 

  11. H. Shima, T. Nomura, T. Nakayama, Phys. Rev. B 70, 075116 (2004)

    Article  ADS  Google Scholar 

  12. M. Larcher, M. Modugno, F. Dalfovo, Phys. Rev. A 83, 013624 (2011)

    Article  ADS  Google Scholar 

  13. N. Bilas, N. Pavloff, Eur. Phys. J. D 40, 387 (2006)

    Article  ADS  Google Scholar 

  14. A. Yedjour, B.A. Van Tiggelen, Eur. Phys. J. D 59, 249 (2010)

    Article  ADS  Google Scholar 

  15. M. Moratti, M. Modugno, Eur. Phys. J. D 66, 138 (2012)

    Article  ADS  Google Scholar 

  16. F.A.B.F. de Mouraa, U.L. Fulco, M.L. Lyra, F. Domínguez-Adamed, E.L. Albuquerque, Physica A 390, 535 (2011)

    Article  ADS  Google Scholar 

  17. A. Djeraba, K. Senouci, N. Zekri, Physica B 405, 1558 (2010)

    Article  ADS  Google Scholar 

  18. I. Avgin, D.L. Huber, Physica B 406, 1906 (2011)

    Article  ADS  Google Scholar 

  19. F.A.B.F. de Mouraa, M.L. Lyra, Phys. Rev. Lett. 81, 3735 (1998)

    Article  ADS  Google Scholar 

  20. C. Albrecht, S. Wimberger, Phys. Rev. B 85, 045107 (2012)

    Article  ADS  Google Scholar 

  21. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J. Ren, S. Zhu, Eur. Phys. J. D 50, 103 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. M.-M. He, C.-T. Xu, G. Chen, J.-Q. Liang, Eur. Phys. J. D 39, 313 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  24. W.W. Cheng, C.J. Shan, Y.B. Sheng, L.Y. Gong, S.M. Zhao, B.Y. Zheng, Physica E 44, 1320 (2012)

    Article  ADS  Google Scholar 

  25. W.W. Cheng, C.J. Shan, Y.B. Sheng, L.Y. Gong, S.M. Zhao, Physica B 407, 3671 (2012)

    Article  ADS  Google Scholar 

  26. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  27. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  28. M. Allegra, P. Giorda, A. Montorsi, Phys. Rev. B 84, 245133 (2011)

    Article  ADS  Google Scholar 

  29. L.Y. Gong, H. Zhu, S.M. Zhao, W.W. Cheng, Y.B. Sheng, Phys. Lett. A 376, 3026 (2012)

    Article  ADS  Google Scholar 

  30. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  31. X.M. Lu, J. Ma, Z.J. Xi, X.G. Wang, Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  32. D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  33. B. Dakić, V. Vedral, Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  34. F. Altintas, Opt. Commun. 283, 5264 (2010)

    Article  ADS  Google Scholar 

  35. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  36. S. Aubry, G. André, Ann. Isr. Phys. Soc. 3, 133 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.W. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Gong, L., Shan, C. et al. Geometric discord characterize localization transition in the one-dimensional systems. Eur. Phys. J. D 67, 121 (2013). https://doi.org/10.1140/epjd/e2013-40145-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40145-y

Keywords

Navigation