Skip to main content
Log in

Dependence of delay-induced coherence resonance on time-periodic coupling strength in Newman-Watts neuronal networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recently, delay-induced coherence resonance (CR) in neuronal networks with fixed coupling strength has received much attention. In this paper, we study delay-induced CR in Newman-Watts neuronal networks with time-periodic coupling strength, mainly investigating how CR changes with the varying frequency of time-periodic coupling strength. We find that delay-induced CR become more frequent as the frequency is increased. When the frequency exceeds a threshold value, time delay can induce multiple CR more than for constant coupling strength. Furthermore, delay-induced CR occurs more abruptly and becomes more pronounced for time-periodic coupling strength than for constant coupling strength. These results show that delay-induced CR strongly depends on the coupling strength of neurons, and time delay can optimize spiking coherence more frequently and precisely in the presence of time-periodic coupling strength. This implies that time-periodic coupling strength could be more helpful for time delay to enhance and optimize the spiking coherence, and thus it may play a more efficient role in improving the time precision of information processing in neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. V.M. Eguíluz, D.R. Chialvo, G.A. Cecchi, M. Baliki, A.V. Apkarian, Phys. Rev. Lett. 94, 018102 (2005)

    Article  ADS  Google Scholar 

  3. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  4. M.E.J. Newman, D.J. Watts, Phys. Lett. A 263, 341 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7322 (1999)

    ADS  Google Scholar 

  6. M.E.J. Newman, J. Stat. Phys. 101, 819 (2000)

    Article  MATH  Google Scholar 

  7. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  8. P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)

    Article  Google Scholar 

  9. M.D. McDonnell, D. Abott, PLoS Comput. Biol. 5, e1000348 (2009)

    Article  Google Scholar 

  10. M. Perc, M. Marhl, Phys. Rev. E 71, 026229 (2005)

    Article  ADS  Google Scholar 

  11. P. Ochab-Marcinek, G. Schmid, I. Goychuk, P. Hänggi, Phys. Rev. E 79, 011904 (2009)

    Article  ADS  Google Scholar 

  12. M. Perc, Chaos Solitons Fractals 31, 64 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Perc, Chaos Solitons Fractals 31, 280 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. Perc, New J. Phys. 7, 252 (2005)

    Article  ADS  Google Scholar 

  15. M. Perc, Phys. Rev. E 76, 066203 (2007)

    Article  ADS  Google Scholar 

  16. M. Ozer, M. Perc, M. Uzuntarla, Phys. Lett. A 373, 964 (2009)

    Article  ADS  MATH  Google Scholar 

  17. M. Perc, Phys. Rev. E 78, 036105 (2008)

    Article  ADS  Google Scholar 

  18. I.M. Ward, S.E. MacLean, A. Kirschner, PLoS ONE 5, e14371 (2010)

    Article  ADS  Google Scholar 

  19. Y. Gai, B. Doiron, J. Rinzel, PLoS Comput. Biol. 6, e1000825 (2010)

    Article  MathSciNet  Google Scholar 

  20. M. Gosak, D. Korošak, M. Marhl, Phys. Rev. E 81, 056104 (2010)

    Article  ADS  Google Scholar 

  21. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science (Elsevier, Amsterdam, 1991)

  22. M. Dhamala, V.K. Jirsa, M.Z. Ding, Phys. Rev. Lett. 92, 074104 (2004)

    Article  ADS  Google Scholar 

  23. E. Rossoni, Y.H. Chen, M.Z. Ding, J.F. Feng, Phys. Rev. E 71, 061904 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  24. N. Burić, K. Todorović, N. Vasović, Phys. Rev. E 78, 036211 (2008)

    Article  ADS  Google Scholar 

  25. A. Roxin, N. Brunel, D. Hansel, Phys. Rev. Lett. 94, 238103 (2005)

    Article  ADS  Google Scholar 

  26. Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Phys. Lett. A 372, 5681 (2008)

    Article  ADS  MATH  Google Scholar 

  27. Q.Y. Wang, Z.S. Duan, M. Perc, G.R. Chen, Europhys. Lett. 83, 50008 (2008)

    Article  ADS  Google Scholar 

  28. Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Phys. Rev. E 80, 026206 (2009)

    Article  ADS  Google Scholar 

  29. Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Chaos 19, 023112 (2009)

    Article  ADS  Google Scholar 

  30. Y.B. Gong, Y.H. Xie, X. Lin, Y.H. Hao, X.G. Ma, Chaos Solitons Fractals 43, 96 (2010)

    Article  ADS  Google Scholar 

  31. Y.H. Hao, Y.B. Gong, X. Lin, Y.H. Xie, X.G. Ma, Neurocomputing 73, 2998 (2010)

    Article  Google Scholar 

  32. Y.H. Hao, Y.B. Gong, L. Wang, X.G. Ma, C.L. Yang, Chaos Solitons Fractals 44, 260 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. Y.H. Hao, Y.B. Gong, X. Lin, Neurocomputing 74, 1748 (2011)

    Article  Google Scholar 

  34. B. Hu, C.S. Zhou, Phys. Rev. E 61, R1001 (2000)

    Article  ADS  Google Scholar 

  35. Y.Q. Wang, D.T.W. Chik, Z.D. Wang, Phys. Rev. E 61, 740 (2000)

    Article  ADS  Google Scholar 

  36. C.S. Zhou, J. Kurths, B. Hu, Phys. Rev. Lett. 87, 098101 (2001)

    Article  ADS  Google Scholar 

  37. C.S. Zhou, J. Kurths, B. Hu, Phys. Rev. E 67, 030101 (2003)

    Article  ADS  Google Scholar 

  38. Q.S. Li, Y.P. Li, Chem. Phys. Lett. 417, 498 (2006)

    Article  ADS  Google Scholar 

  39. Q.S. Li, X.F. Lang, Phys. Rev. E 74, 031905 (2006)

    Article  ADS  Google Scholar 

  40. Q.S. Li, Y. Liu, Phys. Rev. E 73, 016218 (2006)

    Article  ADS  Google Scholar 

  41. J. Ma, Y. Jia, C.N. Wang, S.R. Li, J. Phys. A: Math. Theor. 41, 385105 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Birzu, K. Krischer, Chaos 20, 043114 (2010)

    Article  ADS  Google Scholar 

  43. X. Lin, Y.B. Gong, L. Wang, Chaos 21, 043109 (2011)

    Article  ADS  Google Scholar 

  44. L. Wang, Y.B. Gong, X. Lin, B. Xu, Eur. Phys. J. B 85, 14 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. B. Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Gong, Y.B., Wang, L. et al. Dependence of delay-induced coherence resonance on time-periodic coupling strength in Newman-Watts neuronal networks. Eur. Phys. J. B 85, 299 (2012). https://doi.org/10.1140/epjb/e2012-30452-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30452-0

Keywords

Navigation