Skip to main content
Log in

Size-dependent freezing of n-alcohols in silicon nanochannels

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We present a study on the phase behavior of several linear n-alcohols (heptanol, nonanol and undecanol) in their bulk state as well as confined in mesoporous silicon. We were able to vary the mean pore radii of the nanochannels from r = 3.5  nm to 7 nm and to determine the respective temperatures of the freezing and melting transitions using infrared and dielectric spectroscopy. The smaller the chain length the lower the freezing point, both in the bulk and in the confined state. Under confinement the freezing temperature decreases by up to 28 K compared to the bulk value. In accordance with the Gibbs-Thompson model the lowering is proportional to the inverse pore radius, ΔT fr ∝ 1/r. Moreover, the ratio of freezing temperature depression to melting temperature depression is close to the theoretical value of ΔT fr T melt = 3/2. The spectra also indicate a structural change: while the solid bulk alcohols are a polycrystalline mixture of the orthorhombic β- and monoclinic γ-form, geometrical confinement forces the alcohol-chains into the more simple orthorhombic structure. In addition, a part of the material does not crystallize. Such an additional amorphous phase seems to be a logical consequence of the size mismatch between molecular crystals and irregular shaped pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999)

    Article  ADS  Google Scholar 

  2. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M.G. Sliwinska-Bartkowiak, J. Phys. Condens. Mat. 18, R15 (2006)

    Article  ADS  Google Scholar 

  3. H.K. Christenson, J. Phys. Condens. Mat. 13, R95 (2001)

    Article  ADS  Google Scholar 

  4. K. Knorr, P. Huber, D. Wallacher, Z. Phys. Chem. 222, 257 (2008)

    Google Scholar 

  5. K. Schappert, R. Pelster, Phys. Rev. B 78, 174108 (2008)

    Article  ADS  Google Scholar 

  6. J. Koppensteiner, W. Schranz, M.R. Puica, Phys. Rev. B 78, 054203 (2008)

    Article  ADS  Google Scholar 

  7. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000)

    Article  ADS  Google Scholar 

  8. F. Kremer, A. Huwe, M. Arndt, P. Behrens, W. Schwieger, J. Phys. Condens. Matter 11, A175 (1999)

    Article  ADS  Google Scholar 

  9. C.L. Jackson, G.B. McKenna, J. Non-Cryst. Solids 131-133, 221 (1991)

    Article  ADS  Google Scholar 

  10. G. Barut, P. Pissis, R. Pelster, G. Nimtz, Phys. Rev. Lett. 80, 3543 (1998)

    Article  ADS  Google Scholar 

  11. R. Pelster, Phys. Rev. B 59, 9214 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, A. Kyritsis, P. Pissis, Phys. Rev. B 58, 5336 (1998)

    Article  ADS  Google Scholar 

  13. P. Pissis, A. Kyritsis, D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, J. Phys. Condens. Matter 10, 6205 (1998)

    Article  ADS  Google Scholar 

  14. P. Pissis, A. Kyritsis, G. Barut, R. Pelster, G. Nimtz, Jrl. Non-Cryst. Solids 235237, 444 (1998)

    Article  Google Scholar 

  15. W. Schranz, M.R. Puica, J. Koppensteiner, H. Kabelka, A.V. Kityk, Europhys. Lett. 79, 36003 (2007)

    Article  ADS  Google Scholar 

  16. B. Frick, M. Koza, R. Zorn, Eur. Phys. J. E 12, 3 (2003)

    Article  Google Scholar 

  17. A. Henschel, K. Knorr, P. Huber, Phil. Mag. Lett. 90, 481 (2010)

    Article  ADS  Google Scholar 

  18. P. Huber, V.P. Soprunyuk, K. Knorr, Phys. Rev. E 74, 031610 (2006)

    Article  ADS  Google Scholar 

  19. R. Montenegro, K. Landfester, Langmuir 19, 5996 (2003)

    Article  Google Scholar 

  20. B. Xie, G. Liu, S. Jiang, Y. Zhao, D. Wang, J. Phys. Chem. B 112, 13310 (2008)

    Article  Google Scholar 

  21. R. Valiullin, A. Khokhlov, Phys. Rev. E 73, 051605 (2006)

    Article  ADS  Google Scholar 

  22. G. Crawford, S. Zumer (eds.), Liquid Crystals in Complex Geometries (Taylor and Francis, London, 1996)

  23. A.V. Kityk, M. Wolff, K. Knorr, D. Morineau, R. Lefort, P. Huber, Phys. Rev. Lett. 101, 187801 (2008)

    Article  ADS  Google Scholar 

  24. P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhys. Lett. 65, 351 (2004)

    Article  ADS  Google Scholar 

  25. A. Henschel, T. Hofmann, P. Huber, K. Knorr, Phys. Rev. E 75, 021607 (2007)

    Article  ADS  Google Scholar 

  26. R. Berwanger, A. Henschel, K. Knorr, P. Huber, R. Pelster, Phys. Rev. B 79, 125442 (2009)

    Article  ADS  Google Scholar 

  27. Rene Berwanger, Ph.D. thesis, Saarland University (in preparation)

  28. V. Lehmann, U. Gösele, Appl. Phys. Lett. 58, 856 (1991)

    Article  ADS  Google Scholar 

  29. V. Lehmann, R. Stengl, A. Luigart, Mater. Sci. Eng. B 69-70, 11 (2000)

    Article  Google Scholar 

  30. X.G. Zhang, J. Electrochem. Soc. 151, C69 (2004)

    Article  Google Scholar 

  31. A.G. Cullis, L.T. Canham, P.D.J. Calcott, J. Appl. Phys. 82, 909 (1997)

    Article  ADS  Google Scholar 

  32. S. Gruener, P. Huber, Phys. Rev. Lett. 100, 064502 (2008)

    Article  ADS  Google Scholar 

  33. P. Huber, S. Gruener, C. Schaefer, K. Knorr, A.V. Kityk, Eur. Phys. J. Special Topics 141, 101 (2007)

    Article  Google Scholar 

  34. R. Pelster, IEEE Trans. Microw. Theory Techn. 43, 1494 (1995)

    Article  ADS  Google Scholar 

  35. M. Tasumi, T. Shimanouchi, A. Watanabe, R. Goto, Spectrochim. Acta 20, 629 (1964)

    Article  ADS  Google Scholar 

  36. L. Ventola, M. Ramirez, T. Calvet, X.Solans, M.A. Cuevas-Diarte, P. Negrier, D. Mondieig, J.C. van Miltenburg, H.A.J. Oonk, Chem. Mater. 14, 508 (2002)

    Article  Google Scholar 

  37. E.B. Sirota, X.Z. Wu, J. Chem. Phys. 105, 7763 (1996)

    Article  ADS  Google Scholar 

  38. A. Watanabe, Bull. Chem. Soc. Jpn. 36, 336 (1963)

    Article  Google Scholar 

  39. J. Sun, S.L. Simon, Thermochim. Acta 463, 32 (2007)

    Article  Google Scholar 

  40. K. Morishige, K. Kawano, J. Chem. Phys. 112, 11023 (2000)

    Article  ADS  Google Scholar 

  41. H. Sackmann, F. Sauerwald, Z. Phys. Chem. (Leipzig) 195, 295 (1950)

    Google Scholar 

  42. F.R. McKenna, H.V. Tartar, E.C. Lingfelter, J. Am. Chem. Soc. 71, 729 (1949)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pelster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berwanger, R., Schumacher, C., Huber, P. et al. Size-dependent freezing of n-alcohols in silicon nanochannels. Eur. Phys. J. Spec. Top. 189, 239–249 (2010). https://doi.org/10.1140/epjst/e2010-01328-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01328-6

Keywords

Navigation